References

Anshuka, A., Ogtrop, F. F. van, & Willem Vervoort, R. (2019). Drought forecasting through statistical models using standardised precipitation index: A systematic review and meta-regression analysis. Natural Hazards, 97(2), 955–977. https://doi.org/10.1007/s11069-019-03665-6
Assink, M., & Wibbelink, C. J. M. (2016). Fitting three-level meta-analytic models in R: A step-by-step tutorial. The Quantitative Methods for Psychology, 12(3), 154–174. https://doi.org/10.20982/tqmp.12.3.p154
Barendregt, J. J., Doi, S. A., Lee, Y. Y., Norman, R. E., & Vos, T. (2013). Meta-analysis of prevalence. Journal of Epidemiology and Community Health (1979-), 67(11), 974–978. https://doi.org/10.1136/jech-2013-203104
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Wiley.
Borges Migliavaca, C., Stein, C., Colpani, V., Barker, T. H., Munn, Z., Falavigna, M., & on behalf of the Prevalence Estimates Reviews Systematic Review Methodology Group (PERSyst). (2020). How are systematic reviews of prevalence conducted? A methodological study. BMC Medical Research Methodology, 20(1), 96. https://doi.org/10.1186/s12874-020-00975-3
Bozada, T., Borden, J., Workman, J., Del Cid, M., Malinowski, J., & Luechtefeld, T. (2021). Sysrev: A FAIR platform for data curation and systematic evidence review. Frontiers in Artificial Intelligence, 4, 685298. https://doi.org/10.3389/frai.2021.685298
Burger, J., & Meertens, Q. (2020). The algorithm versus the chimps:on the minima of classifier performance metrics. In L. Cao, W. Kosters, & J. Lijffijt (Eds.), BNAIC/BeneLearn 2020 proceedings (pp. 38–55). BNAIC/BeneLearn. https://bnaic.liacs.leidenuniv.nl/bnaic2020proceedings.pdf
Burke, M., Driscoll, A., Lobell, D. B., & Ermon, S. (2021). Using satellite imagery to understand and promote sustainable development. Science, 371(6535), eabe8628. https://doi.org/10.1126/science.abe8628
Campbell, McKenzie, J. E., Sowden, A., Katikireddi, S. V., Brennan, S. E., Ellis, S., Hartmann-Boyce, J., Ryan, R., Shepperd, S., Thomas, J., Welch, V., & Thomson, H. (2020). Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. BMJ, 368, l6890. https://doi.org/10.1136/bmj.l6890
Campbell, & Wynne, R. H. (2011). Introduction to remote sensing (5th ed). Guilford Press.
Cheung, M. W. L. (2014). Modeling dependent effect sizes with three-level meta-analyses: A structural equation modeling approach. Psychological Methods, 19(2), 211–229. https://doi.org/10.1037/a0032968
Debray, T. P. A., Damen, J. A. A. G., Snell, K. I. E., Ensor, J., Hooft, L., Reitsma, J. B., Riley, R. D., & Moons, K. G. M. (2017). A guide to systematic review and meta-analysis of prediction model performance. BMJ, i6460. https://doi.org/10.1136/bmj.i6460
Doi, S. A., & Xu, C. (2021). The FreemanTukey double arcsine transformation for the meta-analysis of proportions: Recent criticisms were seriously misleading. Journal of Evidence-Based Medicine, 14(4), 259–261. https://doi.org/10.1111/jebm.12445
Ekmen, O., & Kocaman, S. (2024). Remote sensing for UN SDGs: A global analysis of research and collaborations. The Egyptian Journal of Remote Sensing and Space Sciences, 27(2), 329–341. https://doi.org/10.1016/j.ejrs.2024.04.002
FAO, F. and A. O. (2016). Map accuracy assessment and area estimation practical guide., http://www.fao.org/3/a-i5601e.pdf
Foody, G. M. (2020). Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sensing of Environment, 239, 111630. https://doi.org/10.1016/j.rse.2019.111630
Freeman, M. F., & Tukey, J. W. (1950). Transformations Related to the Angular and the Square Root. The Annals of Mathematical Statistics, 21(4), 607–611. https://doi.org/10.1214/aoms/1177729756
Gusenbauer, M., & Haddaway, N. R. (2020). Which academic search systems are suitable for systematic reviews or meta‐analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Research Synthesis Methods, 11(2), 181–217. https://doi.org/10.1002/jrsm.1378
Haddaway, N. R., Bannach-Brown, A., Grainger, M. J., Hamilton, W. K., Hennessy, E. A., Keenan, C., Pritchard, C. C., & Stojanova, J. (2022). The evidence synthesis and meta-analysis in R conference (ESMARConf): Levelling the playing field of conference accessibility and equitability. Systematic Reviews, 11(1), 113. https://doi.org/10.1186/s13643-022-01985-6
Hall, J. A., & Rosenthal, R. (2018). Choosing between random effects models in meta-analysis: Units of analysis and the generalizability of obtained results. Social and Personality Psychology Compass, 12(10), e12414. https://doi.org/10.1111/spc3.12414
Hall, O., Dompae, F., Wahab, I., & Dzanku, F. M. (2023). A review of machine learning and satellite imagery for poverty prediction: Implications for development research and applications. Journal of International Development, 35(7), 1753–1768. https://doi.org/10.1002/jid.3751
Hanadé Houmma, I., El Mansouri, L., Gadal, S., Garba, M., & Hadria, R. (2022). Modelling agricultural drought: A review of latest advances in big data technologies. Geomatics, Natural Hazards and Risk, 13(1), 2737–2776. https://doi.org/10.1080/19475705.2022.2131471
Hansen, C., Steinmetz, H., & Block, J. (2022b). How to conduct a meta-analysis in eight steps: A practical guide. Management Review Quarterly, 72(1), 1–19. https://doi.org/10.1007/s11301-021-00247-4
Hansen, C., Steinmetz, H., & Block, J. (2022a). How to conduct a meta-analysis in eight steps: a practical guide. Management Review Quarterly, 72(1), 1–19. https://doi.org/10.1007/s11301-021-00247-4
Harrer, M., Cuijpers, P., Furukawa, T. A., & Ebert, D. D. (2022). Doing meta-analysis with r: A hands-on guide. CRC Press/Taylor & Francis Group. https://bookdown.org/MathiasHarrer/Doing_Meta_Analysis_in_R/
Harrer, M., Cuijpers, P., Furukawa, T., & Ebert, D. D. (2019). Dmetar: Companion r package for the guide ’doing meta-analysis in r’. http://dmetar.protectlab.org/
Hedges, L. V., Tipton, E., & Johnson, M. C. (2010). Robust variance estimation in meta-regression with dependent effect size estimates. Research Synthesis Methods, 1(1), 39–65. https://doi.org/10.1002/jrsm.5
Higgins, J. P. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 10, 1539–1558. https://doi:10.1002/sim.1186
Holloway, J., & Mengersen, K. (2018). Statistical Machine Learning Methods and Remote Sensing for Sustainable Development Goals: A Review. Remote Sensing, 10(9), 1365. https://doi.org/10.3390/rs10091365
Iliescu, D., Rusu, A., Greiff, S., Fokkema, M., & Scherer, R. (2022). Why We Need Systematic Reviews and Meta-Analyses in the Testing and Assessment Literature. European Journal of Psychological Assessment, 38(2), 73–77. https://doi.org/10.1027/1015-5759/a000705
Khatami, R., Mountrakis, G., & Stehman, S. V. (2016). A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sensing of Environment, 177, 89–100. https://doi.org/10.1016/j.rse.2016.02.028
Laird, N. M., & Mosteller, F. (1990). Some Statistical Methods for Combining Experimental Results. International Journal of Technology Assessment in Health Care, 6(1), 5–30. https://doi.org/10.1017/s0266462300008916
Lajeunesse, M. J. (2016). Facilitating systematic reviews, data extraction, and meta-analysis with the metagear package for r. 7, 323–330.
Lavallin, A., & Downs, J. A. (2021). Machine learning in geography–Past, present, and future. Geography Compass, 15(5), e12563. https://doi.org/10.1111/gec3.12563
Lin, L., & Xu, C. (2020). Arcsine-based transformations for meta-analysis of proportions: Pros, cons, and alternatives. Health Science Reports, 3(3), e178. https://doi.org/10.1002/hsr2.178
Mahuli, S. A., Rai, A., Mahuli, A. V., & Kumar, A. (2023). Application ChatGPT in conducting systematic reviews and meta-analyses. British Dental Journal, 235(2), 90–92. https://doi.org/10.1038/s41415-023-6132-y
Maso, J., Zabala, A., & Serral, I. (2023). Earth Observations for Sustainable Development Goals. Remote Sensing, 15(10), 2570. https://doi.org/10.3390/rs15102570
McCulloch, C. E., & Neuhaus, J. M. (2011). Misspecifying the shape of a random effects distribution: Why getting it wrong may not matter. Statistical Science, 26(3), 388–402. https://doi.org/10.1214/11-STS361
NASA. (2019). What is Remote Sensing? https://www.earthdata.nasa.gov/learn/backgrounders/remote-sensing
Owers, C. J., Lucas, R. M., Clewley, D., Tissott, B., Chua, S. M. T., Hunt, G., Mueller, N., Planque, C., Punalekar, S. M., Bunting, P., Tan, P., & Metternicht, G. (2022). Operational continental-scale land cover mapping of Australia using the Open Data Cube. International Journal of Digital Earth, 15(1), 1715–1737. https://doi.org/10.1080/17538947.2022.2130461
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, n71. https://doi.org/10.1136/bmj.n71
Polanin, J. R. (2014). An introduction to multilevel meta-analysis,. https://www.youtube.com/watch?v=rJjeRRf23L8&t=1358s; Campbell Colloquium.
Priem, J., Piwowar, H., & Orr, R. (2022). OpenAlex: A fully-open index of scholarly works, authors, venues, institutions, and concepts. https://arxiv.org/abs/2205.01833
Pustejovsky, J. E. (2020). Weighting in multivariate meta-analysis. https://jepusto.com/posts/weighting-in-multivariate-meta-analysis/.
Röver, C., & Friede, T. (2022). Double arcsine transform not appropriate for meta-analysis. Research Synthesis Methods, 13(5), 645–648. https://doi.org/10.1002/jrsm.1591
Schwarzer, G., Carpenter, J. R., & Rücker, G. (2015). Meta-Analysis with R. Springer International Publishing. https://doi.org/10.1007/978-3-319-21416-0
Schwarzer, G., Chemaitelly, H., Abu-Raddad, L. J., & Rücker, G. (2019). Seriously misleading results using inverse of freeman-tukey double arcsine transformation in meta-analysis of single proportions. Research Synthesis Methods, 10, 476–483. https://doi.org/10.1002/jrsm.1348
SEOS. (2014). Introduction to remote sensing. https://seos-project.eu/remotesensing/remotesensing-c01-p06.html
Stehman, S. V., & Foody, G. M. (2019). Key issues in rigorous accuracy assessment of land cover products. Remote Sensing of Environment, 231, 111199. https://doi.org/10.1016/j.rse.2019.05.018
Tawfik, G. M., Dila, K. A. S., Mohamed, M. Y. F., Tam, D. N. H., Kien, N. D., Ahmed, A. M., & Huy, N. T. (2019). A step by step guide for conducting a systematic review and meta-analysis with simulation data. Tropical Medicine and Health, 47(1), 46. https://doi.org/10.1186/s41182-019-0165-6
Thapa, A., Horanont, T., Neupane, B., & Aryal, J. (2023). Deep Learning for Remote Sensing Image Scene Classification: A Review and Meta-Analysis. Remote Sensing, 15(19), 4804. https://doi.org/10.3390/rs15194804
UCS. (2021). Union of Concerned Scientists (UCS) Satellite Database. https://www.ucsusa.org/resources/satellite-database
UN DESA. (2023). The Sustainable Development Goals Report 2023: Special Edition. United Nations. https://doi.org/10.18356/9789210024914
UN-GGIM:Europe. (2019). The territorial dimension in SDG indicators: Geospatial data analysis and its integration with statistical data. Instituto Nacional de Estatística. https://un-ggim-europe.org/wp-content/uploads/2019/05/UN_GGIM_08_05_2019-The-territorial-dimension-in-SDG-indicators-Final.pdf
United Nations. (2017). Earth observations for official statistics: Satellite imagery and geospatial data task team report. https://unstats.un.org/bigdata/task-teams/earth-observation/UNGWG_Satellite_Task_Team_Report_WhiteCover.pdf
United Nations. (2024). The sustainable development goals report 2024. https://unstats.un.org/sdgs/report/2024/The-Sustainable-Development-Goals-Report-2024.pdf
Veroniki, A. A., Jackson, D., Viechtbauer, W., Bender, R., Bowden, J., Knapp, G., Kuss, O., Higgins, J. P., Langan, D., & Salanti, G. (2015). Methods to estimate the between-study variance and its uncertainty in meta-analysis. Research Synthesis Methods, 7(1), 55–79. https://doi.org/10.1002/jrsm.1164
Viechtbauer, W. (2010). Conducting Meta-Analyses in R with the metafor Package. Journal of Statistical Software, 36, 1–48. https://doi.org/10.18637/jss.v036.i03
Viechtbauer, W. (2020). Weights in models fitted with the rma.mv() function. https://www.metafor-project.org/doku.php/tips:weights_in_rma.mv_models.
Viechtbauer, W. (2022). Metafor: Model selection using the glmulti and MuMIn packages. https://www.metafor-project.org/doku.php/tips:model_selection_with_glmulti_and_mumin#variable_importance.
Viechtbauer, W. (2024a). Frequently asked questions [the metafor package]: Freeman-tukey transformation of proportions. https://www.metafor-project.org/doku.php/faq#how_is_the_freeman-tukey_trans.
Viechtbauer, W. (2024b). metafor: Meta-Analysis Package for R. https://doi.org/10.32614/CRAN.package.metafor
Wang, N. (2023). Conducting Meta-analyses of Proportions in R. Journal of Behavioral Data Science, 3(2), 64–126. https://doi.org/10.35566/jbds/v3n2/wang
Yin, C., Peng, N., Li, Y., Shi, Y., Yang, S., & Jia, P. (2023). A review on street view observations in support of the sustainable development goals. International Journal of Applied Earth Observation and Geoinformation, 117, 103205. https://doi.org/10.1016/j.jag.2023.103205
Zhang, C., & Li, X. (2022). Land Use and Land Cover Mapping in the Era of Big Data. Land, 11(10), 1692. https://doi.org/10.3390/land11101692
Zhang, Y., Liu, J., & Shen, W. (2022). A Review of Ensemble Learning Algorithms Used in Remote Sensing Applications. Applied Sciences, 12(17), 8654. https://doi.org/10.3390/app12178654
Zhao, Q., Yu, L., Du, Z., Peng, D., Hao, P., Zhang, Y., & Gong, P. (2022). An Overview of the Applications of Earth Observation Satellite Data: Impacts and Future Trends. Remote Sensing, 14(8), 1863. https://doi.org/10.3390/rs14081863