References
Anshuka, A., Ogtrop, F. F. van, & Willem Vervoort, R. (2019).
Drought forecasting through statistical models using standardised
precipitation index: A systematic review and meta-regression analysis.
Natural Hazards, 97(2), 955–977. https://doi.org/10.1007/s11069-019-03665-6
Assink, M., & Wibbelink, C. J. M. (2016). Fitting three-level
meta-analytic models in R: A step-by-step tutorial. The Quantitative
Methods for Psychology, 12(3), 154–174. https://doi.org/10.20982/tqmp.12.3.p154
Barendregt, J. J., Doi, S. A., Lee, Y. Y., Norman, R. E., & Vos, T.
(2013). Meta-analysis of prevalence. Journal of Epidemiology and
Community Health (1979-), 67(11), 974–978. https://doi.org/10.1136/jech-2013-203104
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R.
(2009). Introduction to meta-analysis. Wiley.
Borges Migliavaca, C., Stein, C., Colpani, V., Barker, T. H., Munn, Z.,
Falavigna, M., & on behalf of the Prevalence Estimates Reviews
Systematic Review Methodology Group (PERSyst). (2020). How are
systematic reviews of prevalence conducted? A methodological study.
BMC Medical Research Methodology, 20(1), 96. https://doi.org/10.1186/s12874-020-00975-3
Bozada, T., Borden, J., Workman, J., Del Cid, M., Malinowski, J., &
Luechtefeld, T. (2021). Sysrev: A FAIR platform for data curation and
systematic evidence review. Frontiers in Artificial
Intelligence, 4, 685298. https://doi.org/10.3389/frai.2021.685298
Burger, J., & Meertens, Q. (2020). The algorithm versus the
chimps:on the minima of classifier performance metrics. In L. Cao, W.
Kosters, & J. Lijffijt (Eds.), BNAIC/BeneLearn 2020
proceedings (pp. 38–55). BNAIC/BeneLearn. https://bnaic.liacs.leidenuniv.nl/bnaic2020proceedings.pdf
Burke, M., Driscoll, A., Lobell, D. B., & Ermon, S. (2021). Using
satellite imagery to understand and promote sustainable development.
Science, 371(6535), eabe8628. https://doi.org/10.1126/science.abe8628
Campbell, McKenzie, J. E., Sowden, A., Katikireddi, S. V., Brennan, S.
E., Ellis, S., Hartmann-Boyce, J., Ryan, R., Shepperd, S., Thomas, J.,
Welch, V., & Thomson, H. (2020). Synthesis without meta-analysis
(SWiM) in systematic reviews: reporting guideline. BMJ,
368, l6890. https://doi.org/10.1136/bmj.l6890
Campbell, & Wynne, R. H. (2011). Introduction to remote
sensing (5th ed). Guilford Press.
Cheung, M. W. L. (2014). Modeling dependent effect sizes with
three-level meta-analyses: A structural equation modeling approach.
Psychological Methods, 19(2), 211–229. https://doi.org/10.1037/a0032968
Debray, T. P. A., Damen, J. A. A. G., Snell, K. I. E., Ensor, J., Hooft,
L., Reitsma, J. B., Riley, R. D., & Moons, K. G. M. (2017). A guide
to systematic review and meta-analysis of prediction model performance.
BMJ, i6460. https://doi.org/10.1136/bmj.i6460
Doi, S. A., & Xu, C. (2021). The FreemanTukey double
arcsine transformation for the meta-analysis of proportions: Recent
criticisms were seriously misleading. Journal of Evidence-Based
Medicine, 14(4), 259–261. https://doi.org/10.1111/jebm.12445
Ekmen, O., & Kocaman, S. (2024). Remote sensing for UN SDGs: A
global analysis of research and collaborations. The Egyptian Journal
of Remote Sensing and Space Sciences, 27(2), 329–341. https://doi.org/10.1016/j.ejrs.2024.04.002
FAO, F. and A. O. (2016). Map accuracy assessment and area
estimation practical guide.,
http://www.fao.org/3/a-i5601e.pdf
Foody, G. M. (2020). Explaining the unsuitability of the kappa
coefficient in the assessment and comparison of the accuracy of thematic
maps obtained by image classification. Remote Sensing of
Environment, 239, 111630. https://doi.org/10.1016/j.rse.2019.111630
Freeman, M. F., & Tukey, J. W. (1950). Transformations Related to
the Angular and the Square Root. The Annals of Mathematical
Statistics, 21(4), 607–611. https://doi.org/10.1214/aoms/1177729756
Gusenbauer, M., & Haddaway, N. R. (2020). Which academic search
systems are suitable for systematic reviews or meta‐analyses?
Evaluating retrieval qualities of Google
Scholar, PubMed, and 26 other resources.
Research Synthesis Methods, 11(2), 181–217. https://doi.org/10.1002/jrsm.1378
Haddaway, N. R., Bannach-Brown, A., Grainger, M. J., Hamilton, W. K.,
Hennessy, E. A., Keenan, C., Pritchard, C. C., & Stojanova, J.
(2022). The evidence synthesis and meta-analysis in R
conference (ESMARConf): Levelling the playing field of
conference accessibility and equitability. Systematic Reviews,
11(1), 113. https://doi.org/10.1186/s13643-022-01985-6
Hall, J. A., & Rosenthal, R. (2018). Choosing between random effects
models in meta-analysis: Units of analysis and the generalizability of
obtained results. Social and Personality Psychology Compass,
12(10), e12414. https://doi.org/10.1111/spc3.12414
Hall, O., Dompae, F., Wahab, I., & Dzanku, F. M. (2023). A review of
machine learning and satellite imagery for poverty prediction:
Implications for development research and applications. Journal of
International Development, 35(7), 1753–1768. https://doi.org/10.1002/jid.3751
Hanadé Houmma, I., El Mansouri, L., Gadal, S., Garba, M., & Hadria,
R. (2022). Modelling agricultural drought: A review of latest advances
in big data technologies. Geomatics, Natural Hazards and Risk,
13(1), 2737–2776. https://doi.org/10.1080/19475705.2022.2131471
Hansen, C., Steinmetz, H., & Block, J. (2022b). How to conduct a
meta-analysis in eight steps: A practical guide. Management Review
Quarterly, 72(1), 1–19. https://doi.org/10.1007/s11301-021-00247-4
Hansen, C., Steinmetz, H., & Block, J. (2022a). How to conduct a
meta-analysis in eight steps: a practical guide. Management Review
Quarterly, 72(1), 1–19. https://doi.org/10.1007/s11301-021-00247-4
Harrer, M., Cuijpers, P., Furukawa, T. A., & Ebert, D. D. (2022).
Doing meta-analysis with r: A hands-on guide. CRC Press/Taylor
& Francis Group. https://bookdown.org/MathiasHarrer/Doing_Meta_Analysis_in_R/
Harrer, M., Cuijpers, P., Furukawa, T., & Ebert, D. D. (2019).
Dmetar: Companion r package for the guide ’doing meta-analysis in
r’. http://dmetar.protectlab.org/
Hedges, L. V., Tipton, E., & Johnson, M. C. (2010). Robust variance
estimation in meta-regression with dependent effect size estimates.
Research Synthesis Methods, 1(1), 39–65. https://doi.org/10.1002/jrsm.5
Higgins, J. P. T., & Thompson, S. G. (2002). Quantifying
heterogeneity in a meta-analysis. Statistics in Medicine,
10, 1539–1558. https://doi:10.1002/sim.1186
Holloway, J., & Mengersen, K. (2018). Statistical
Machine Learning Methods and
Remote Sensing for Sustainable
Development Goals: A
Review. Remote Sensing, 10(9), 1365. https://doi.org/10.3390/rs10091365
Iliescu, D., Rusu, A., Greiff, S., Fokkema, M., & Scherer, R.
(2022). Why We Need Systematic Reviews and Meta-Analyses in the Testing
and Assessment Literature. European Journal of Psychological
Assessment, 38(2), 73–77. https://doi.org/10.1027/1015-5759/a000705
Khatami, R., Mountrakis, G., & Stehman, S. V. (2016). A
meta-analysis of remote sensing research on supervised pixel-based
land-cover image classification processes: General guidelines for
practitioners and future research. Remote Sensing of
Environment, 177, 89–100. https://doi.org/10.1016/j.rse.2016.02.028
Laird, N. M., & Mosteller, F. (1990). Some Statistical Methods for
Combining Experimental Results. International Journal of Technology
Assessment in Health Care, 6(1), 5–30. https://doi.org/10.1017/s0266462300008916
Lajeunesse, M. J. (2016). Facilitating systematic reviews, data
extraction, and meta-analysis with the metagear package for r.
7, 323–330.
Lavallin, A., & Downs, J. A. (2021). Machine learning in
geography–Past, present, and future. Geography
Compass, 15(5), e12563. https://doi.org/10.1111/gec3.12563
Lin, L., & Xu, C. (2020). Arcsine-based transformations for
meta-analysis of proportions: Pros, cons, and alternatives. Health
Science Reports, 3(3), e178. https://doi.org/10.1002/hsr2.178
Mahuli, S. A., Rai, A., Mahuli, A. V., & Kumar, A. (2023).
Application ChatGPT in conducting systematic reviews and meta-analyses.
British Dental Journal, 235(2), 90–92. https://doi.org/10.1038/s41415-023-6132-y
Maso, J., Zabala, A., & Serral, I. (2023). Earth Observations for
Sustainable Development Goals. Remote Sensing, 15(10),
2570. https://doi.org/10.3390/rs15102570
McCulloch, C. E., & Neuhaus, J. M. (2011). Misspecifying the shape
of a random effects distribution: Why getting it wrong may not matter.
Statistical Science, 26(3), 388–402. https://doi.org/10.1214/11-STS361
NASA. (2019). What is Remote Sensing? https://www.earthdata.nasa.gov/learn/backgrounders/remote-sensing
Owers, C. J., Lucas, R. M., Clewley, D., Tissott, B., Chua, S. M. T.,
Hunt, G., Mueller, N., Planque, C., Punalekar, S. M., Bunting, P., Tan,
P., & Metternicht, G. (2022). Operational continental-scale land
cover mapping of Australia using the Open Data Cube. International
Journal of Digital Earth, 15(1), 1715–1737. https://doi.org/10.1080/17538947.2022.2130461
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T.
C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan,
S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu,
M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D.
(2021). The PRISMA 2020 statement: an updated guideline for reporting
systematic reviews. BMJ, n71. https://doi.org/10.1136/bmj.n71
Polanin, J. R. (2014). An introduction to multilevel
meta-analysis,. https://www.youtube.com/watch?v=rJjeRRf23L8&t=1358s;
Campbell Colloquium.
Priem, J., Piwowar, H., & Orr, R. (2022). OpenAlex: A fully-open
index of scholarly works, authors, venues, institutions, and
concepts. https://arxiv.org/abs/2205.01833
Pustejovsky, J. E. (2020). Weighting in multivariate
meta-analysis. https://jepusto.com/posts/weighting-in-multivariate-meta-analysis/.
Röver, C., & Friede, T. (2022). Double arcsine transform not
appropriate for meta-analysis. Research Synthesis Methods,
13(5), 645–648. https://doi.org/10.1002/jrsm.1591
Schwarzer, G., Carpenter, J. R., & Rücker, G. (2015).
Meta-Analysis with R. Springer
International Publishing. https://doi.org/10.1007/978-3-319-21416-0
Schwarzer, G., Chemaitelly, H., Abu-Raddad, L. J., & Rücker, G.
(2019). Seriously misleading results using inverse of freeman-tukey
double arcsine transformation in meta-analysis of single proportions.
Research Synthesis Methods, 10, 476–483. https://doi.org/10.1002/jrsm.1348
SEOS. (2014). Introduction to remote sensing. https://seos-project.eu/remotesensing/remotesensing-c01-p06.html
Stehman, S. V., & Foody, G. M. (2019). Key issues in rigorous
accuracy assessment of land cover products. Remote Sensing of
Environment, 231, 111199. https://doi.org/10.1016/j.rse.2019.05.018
Tawfik, G. M., Dila, K. A. S., Mohamed, M. Y. F., Tam, D. N. H., Kien,
N. D., Ahmed, A. M., & Huy, N. T. (2019). A step by step guide for
conducting a systematic review and meta-analysis with simulation data.
Tropical Medicine and Health, 47(1), 46. https://doi.org/10.1186/s41182-019-0165-6
Thapa, A., Horanont, T., Neupane, B., & Aryal, J. (2023). Deep
Learning for Remote Sensing
Image Scene Classification:
A Review and
Meta-Analysis. Remote Sensing,
15(19), 4804. https://doi.org/10.3390/rs15194804
UCS. (2021). Union of Concerned Scientists (UCS) Satellite
Database. https://www.ucsusa.org/resources/satellite-database
UN DESA. (2023). The Sustainable
Development Goals Report 2023:
Special Edition. United Nations. https://doi.org/10.18356/9789210024914
UN-GGIM:Europe. (2019). The territorial dimension in SDG indicators:
Geospatial data analysis and its integration with statistical data.
Instituto Nacional de Estatística. https://un-ggim-europe.org/wp-content/uploads/2019/05/UN_GGIM_08_05_2019-The-territorial-dimension-in-SDG-indicators-Final.pdf
United Nations. (2017). Earth observations for official statistics:
Satellite imagery and geospatial data task team report. https://unstats.un.org/bigdata/task-teams/earth-observation/UNGWG_Satellite_Task_Team_Report_WhiteCover.pdf
United Nations. (2024). The sustainable development goals report
2024. https://unstats.un.org/sdgs/report/2024/The-Sustainable-Development-Goals-Report-2024.pdf
Veroniki, A. A., Jackson, D., Viechtbauer, W., Bender, R., Bowden, J.,
Knapp, G., Kuss, O., Higgins, J. P., Langan, D., & Salanti, G.
(2015). Methods to estimate the between-study variance and its
uncertainty in meta-analysis. Research Synthesis Methods,
7(1), 55–79. https://doi.org/10.1002/jrsm.1164
Viechtbauer, W. (2010). Conducting Meta-Analyses in R with the metafor
Package. Journal of Statistical Software, 36, 1–48. https://doi.org/10.18637/jss.v036.i03
Viechtbauer, W. (2020). Weights in models fitted with the rma.mv()
function. https://www.metafor-project.org/doku.php/tips:weights_in_rma.mv_models.
Viechtbauer, W. (2022). Metafor: Model selection using the glmulti
and MuMIn packages. https://www.metafor-project.org/doku.php/tips:model_selection_with_glmulti_and_mumin#variable_importance.
Viechtbauer, W. (2024a). Frequently asked questions [the metafor
package]: Freeman-tukey transformation of proportions. https://www.metafor-project.org/doku.php/faq#how_is_the_freeman-tukey_trans.
Viechtbauer, W. (2024b). metafor: Meta-Analysis Package for R.
https://doi.org/10.32614/CRAN.package.metafor
Wang, N. (2023). Conducting Meta-analyses of Proportions in R.
Journal of Behavioral Data Science, 3(2), 64–126. https://doi.org/10.35566/jbds/v3n2/wang
Yin, C., Peng, N., Li, Y., Shi, Y., Yang, S., & Jia, P. (2023). A
review on street view observations in support of the sustainable
development goals. International Journal of Applied Earth
Observation and Geoinformation, 117, 103205. https://doi.org/10.1016/j.jag.2023.103205
Zhang, C., & Li, X. (2022). Land Use and Land Cover Mapping in the
Era of Big Data. Land, 11(10), 1692. https://doi.org/10.3390/land11101692
Zhang, Y., Liu, J., & Shen, W. (2022). A Review of
Ensemble Learning Algorithms
Used in Remote Sensing
Applications. Applied Sciences, 12(17),
8654. https://doi.org/10.3390/app12178654
Zhao, Q., Yu, L., Du, Z., Peng, D., Hao, P., Zhang, Y., & Gong, P.
(2022). An Overview of the Applications of
Earth Observation Satellite
Data: Impacts and Future
Trends. Remote Sensing, 14(8), 1863. https://doi.org/10.3390/rs14081863