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Foreword
The aim of this research was to assess whether study features can explain variations in results across

studies. To my knowledge, this is the first study to apply weighted meta-analysis techniques to exam-

ining the performance of machine learning models in remote sensing. While I intended to adhere to

PRISMA guidelines, the exploratory nature of the topic—and my own learning journey—meant pre-

registration was ultimately not conducted, and with data extraction carried out solely by myself, there

is a degree of subjectivity and potential for error there. But I’m giving away spoilers for the discussion,

so I’ll stop myself there!

I have succeeded in building this manuscript using Quarto, with minimal stylistic adjustments after

rendering. The entire code for this project is available on GitHub, and an HTML version with integrated

code chunks can be accessed on GitHub Pages website. The data processing and paper selection analysis

scripts are all available on the GitHub-hosted site under the appendix (more details about the file

organisation are available on the GitHub page). I have also integrated the Leiden University master

thesis cover format into the Quarto book, so if any future student would like to reuse it please do! I

toyed with the idea of creating a Quarto book template but that is a project for another day.

One last thing, in the discussion of this thesis I suggest that journals should begin requesting data

submissions alongside the manuscript to enable active, ongoing meta-analyses. In support of this idea,

I developed a small pilot website to demonstrate how such a system might work. If anyone feels inclined

to add to the dataset, there are instructions on how to do that there.

To the reader: thank you for taking the time to read my thesis— there’s still time to stop reading,

and I won’t know any different! If you’ve made it this far —hi supervisors, independent reader (and

mum‽)— I would like to apologize in advance for continuing the convention of inconsistent notation

across meta-analysis research. I can only hope I have been consistent within my own work as its best

not to change notations 𝜇-dstream.

i

https://github.com/N-Leach/master_thesis_rs_meta-analysis
https://n-leach.github.io/master_thesis_rs_meta-analysis/
https://n-leach.github.io/meta-analysis_rs/
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Abstract
Objective: This meta-analysis aims to evaluate machine learning methods in remote sensing applica-

tions for monitoring Sustainable Development Goals (SDGs). Specifically, it aims to (1) estimate the

average performance (summary effect size); (2) determine the degree of heterogeneity within and across

studies; (3) assess whether specific study features influence model performance; and (4) compare the

sample-weighted and unweighted estimate summary effect.

Methods: The meta-analysis used the PRISMA guidelines. A search was performed across multiple

academic databases to identify peer-reviewed studies that applied machine learning models to remote

sensing data for SDG monitoring. A random sample of 200 relevant studies was selected for abstract

screening, which was reduced to 𝑛 = 20 studies with 𝑘 = 86 effect sizes for the analysis. To estimate the

overall accuracy of machine learning models both a three-level random-effects model and an unweighted

model were used.

Results: The average overall accuracy of the unweighted model, ̂𝜇
unweighted

= 0.90 (95% CI [0.85; 0.94]),

which is not substantially different from the weighted model, ̂𝜇
weighted

= 0.89 (CI 95% [0.85, 0.94]. The

weighted models found substantial heterogeneity between results. Unsurprisingly, the proportion of the

majority class was identified as the most important factor affecting the overall accuracy, followed by the

inclusion of ancillary data. However, machine learning model group (i.e., neural networks, tree-based

models) or SDG goal did not have a significant effect on the reported overall accuracy.

Conclusion: This study demonstrates the high variability model performance in remote sensing ap-

plications. As well as the impact class imbalance has on the reported overall accuracy. These findings

suggest the need for precise metrics to assess model performance, particularly in imbalanced datasets.

Future research should examine a broader range of performance metrics and explore additional study

features to explore further what features affect the outcomes. In addition, the robustness of the random-

effects meta-analysis methods application to this field should be further examined.
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Table of Notation

Notation Definition Section

𝑟𝑐 Index for the rows and columns of a matrix Chapter 2,

Chapter 3𝑚𝑟𝑐 Confusion matrix: the number of instances where the actual class is 𝑟 and

the predicted class is 𝑐. Where 𝑟 is the row index, representing the actual

class (reference) and 𝑐 is the column index, representing the predicted class.

Chapter 2

𝑚 The total number of classified instances on which the 𝑖−th effect size in the𝑗−th study is based.

"

𝑠 Number of correctly classified instances. "𝑛 Total number of primary studies used in this study. In Figure 3.3 𝑛 is the

number of studies in each section.

Chapter 3

𝑗 The study index: 𝑗 = 1, ..., 𝑛 "𝑘𝑗 Total number of effect sizes in the 𝑗−th study "𝑖 The effect size index within a study, 𝑖 = 1, ..., 𝑘𝑗 "𝑘 Total number of effect sizes gathered. "𝜃𝑖𝑗, ̂𝜃𝑖𝑗 True and estimated effect size (overall accuracy) from the 𝑖−th effect size

the 𝑗−th study.

"

𝜅𝑗 Average effect size in study 𝑗. "𝜇̂𝜇
unweighted̂𝜇
weighted

Summary effect size: average effect size in the population.

Unweighted estimate- where the unit of analysis are the numbers inclued in

this study.

Weighted estimate where the unit of analysis is the sample sizes of the

primary studies .

"

𝑣𝑖𝑗 Variance of the 𝑖−th effect size in study 𝑗. "𝜎2
level2 Within-study variance "𝜎2
level3 Between-study variance "
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Introduction
In 2015, all United Nations member states adopted the Sustainable Development Goals (SDGs) to ad-

dress global challenges such as climate change, environmental degradation, poverty, and inequality (UN

DESA, 2023; UN-GGIM:Europe, 2019). This international plan outlines 17 global goals to achieve a

better and more sustainable future (UN DESA, 2023; UN-GGIM:Europe, 2019; United Nations, 2024).

Having passed the midpoint of the SDGs’ timeline with significant setbacks, the critical role of timely

and high-quality data has never been more apparent (UN DESA, 2023; United Nations, 2024). These

data are vital to identifying challenges, formulating evidence-based solutions, monitoring the imple-

mentation of solutions, and making essential course corrections (UN-GGIM:Europe, 2019). However,

despite this necessity for high-quality data, traditional monitoring approaches, such as household- or

field-level surveys (ground-acquired data), remain the primary source of data collection for key indica-

tors of SDGs by National Statistical Institutes (NSIs) (Burke et al., 2021; UN-GGIM:Europe, 2019).

These methods are expensive and time-consuming to conduct (Burke et al., 2021). As a result, the

frequency of ground-acquired data varies significantly around the world; for example, the most recent

agricultural census for 24% of the world’s countries was more than 15 years ago (Burke et al., 2021).

Recognizing this challenge, both the United Nations SDG Report (2023, p. 49) and the Global Working

Group on Big Data for Official Statistics underscore the importance of innovative methodology and data

sources, including remote sensing and machine learning, to enhance the monitoring and implementation

of the SDGs (UN-GGIM:Europe, 2019; United Nations, 2017).

Remote sensing — data collected from a distance via satellite, aircraft, or drones — offers a cost-effective

approach for monitoring wide-ranging geographic areas (Khatami et al., 2016; Maso et al., 2023; UN-

GGIM:Europe, 2019; Zhao et al., 2022). Remote sensing imagery has been limited to agricultural and

socioeconomic applications for decades (Burke et al., 2021; Lavallin & Downs, 2021; Y. Zhang et al.,

2022). For instance, the Laboratory for Applications of Remote Sensing (LARS) has utilized satellite

data and machine learning methods for crop identification since the 1960s (Holloway & Mengersen,

2018). However, in recent years, there has been a considerable increase in the spatial, spectral, and

temporal resolution of remote sensing data, alongside a significant increase in free sensor data and

computational power for complex data analysis (Burke et al., 2021; Thapa et al., 2023; Y. Zhang et al.,

2022). The magnitude of possible applications and increased availability of remote sensing data have

rapidly increased the number of published research papers in this field (Burke et al., 2021; Khatami

et al., 2016). Earth observation satellites alone can measure 42% of the SDG targets (Y. Zhang et al.,
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2022).

Despite the increased research and availability the uptake of remote sensing data by NSIs has been

slow. However, many NSIs are now capitalizing on the potential of using new and consistent data

sources and methodologies to support and inform official statistics (United Nations, 2017). These can

be generated by combining geospatial information, remote sensing, and other big data sources, allowing

for the filling of data gaps, providing information where no measurements were previously made, and

improving the temporal and spatial resolutions of data (e.g., daily updates on crop area and yield

statistics). This paradigm shift from traditional statistical methods—such as counting and measuring by

humans—towards estimation from sensors, simulation, and modelling, presents challenges, and requires

convincing, statistically sound results, rigorous validation, and a significant shift in resources within

institutions to adapt to the higher spatial and temporal resolutions necessary to address emerging policy

questions (United Nations, 2017).

Given the wide variety of methodologies and contexts in previous studies, a critical question arises:

What factors influence the performance of machine learning models using remote sensing data for SDG

monitoring? A meta-analysis statistically combines the body of evidence on a specific topic, aiming to

produce unbiased summaries of evidence (Iliescu et al., 2022). There are many potential methods to

choose from to combine results. One choice that is made when conducting a meta-analysis is whether

to use the study’s sample size to weigh the result of each study (sample-weighted estimate) or an

unweighted approach, which treats all results equally, disregarding sample size (J. A. Hall & Rosenthal,

2018). The current standard in meta-analysis research is to use the sample-weighted estimate (J. A. Hall

& Rosenthal, 2018). However, the previous meta-analyses investigating the performance of machine

learning models on remote sensing data have exclusively relied on unweighted approaches. While these

studies have found that certain models, such as Support Vector Machines (SVM) and deep learning

methods, often outperform traditional classifiers, the magnitude of these differences can vary across

applications. For example, Khatami et al. (2016) selected studies with more than one model, and by

making pairwise comparisons they concluded that SVM consistently outperformed other classification

models. However, these meta-analyses relied on unweighted approaches, potentially overlooking if these

variations in results are due to differences in sample sizes, which could affect the reliability and precision

of the findings, as larger studies generally provide more accurate estimates.

Therefore, this study seeks to address the question of how machine learning models perform when

applied to remote sensing data for SDG monitoring. By conducting a meta-analysis on peer-reviewed

research articles in this domain, the study aims to; (1) estimate the average performance (summary effect

size), (2) determine the degree of heterogeneity within and across studies, (3) assess whether specific

study features influence model performance, and (4) compare the sample-weighted and unweighted

estimate summary effect.
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Background
This chapter provides an overview of the concepts and methodologies analysed in this research. It

provides a brief introduction to remote sensing, machine learning techniques, and their applications in

land cover mapping and SDG monitoring.

2.1 Remote Sensing

In the broadest sense, remote sensing involves acquiring information about an object or phenomenon

without direct contact (Campbell & Wynne, 2011). More specifically, remote sensing refers to gathering

data about land or water surfaces using sensors mounted on aerial or satellite platforms that record

electromagnetic radiation reflected or emitted from the Earth’s surface (Campbell & Wynne, 2011, p.

6). The origins of remote sensing lie with the development of photography in the 19th century, with

the earliest aerial or Earth Observation photographs taken with cameras mounted on balloons, kites,

pigeons, and aeroplanes. (Burke et al., 2021; Campbell & Wynne, 2011, p. 7). The first mass use of

remote sensing was during World War I with aerial photography. The modern era of satellite-based

remote sensing started with the launch of Landsat 1 in 1972, the first satellite specifically designed

for Earth Observation (Campbell & Wynne, 2011, p. 15). Today, remote sensing technology enables

frequent and systematic collection of data about the Earth’s surface with global coverage, revolutionizing

our ability to monitor and analyze the Earth’s surface (Burke et al., 2021; NASA, 2019). As of May

2023, roughly 1039 active nonmilitary Earth Observation satellites are in orbit; 51% were launched in

2020 (UCS, 2021).
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Figure 2.1: Number of active satellites by date of launch — data acquired from UCS (2021).
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Sensors on remote sensing devices such as satellites measure electromagnetic radiation reflected by

objects on the Earth’s surface. This is done in two different ways: passive and active. Passive sensors

rely on natural energy sources, like sunlight, to record incident energy reflected off the Earth’s surface.

While active sensors generate their own energy, which is emitted and then measured as it reflects back

from the Earth’s surface (NASA, 2019).

Figure 2.2: Illustration of a passive sensor and an active sensor —source: NASA (2019).

Components of the Earth’s surface have different spectral signatures — i.e., reflect, absorb, or transmit

energy in different amounts and wavelengths (Campbell & Wynne, 2011). Remote sensing devices have

several sensors that measure specific ranges of wavelengths in the electromagnetic spectrum; these are

referred to as spectral bands; e.g., visible light, infrared, or ultraviolet radiation (NASA, 2019; SEOS,

2014). By capturing information from particular bands, the spectral signatures of surfaces can be used

to identify objects on the ground. Figure 2.3 illustrates the differences between the spectral signatures of

soil, green vegetation, and water across various wavelengths. The grey bands in the figure represent the

specific spectral bands on the Landsat TM satellite (SEOS, 2014). The distinct reflectance properties

of each material within these bands enable the differentiation of surface materials, making it possible

to identify different land cover types. This information can be used directly for classification, or it can

be combined into indices—such as the Normalized Difference Vegetation Index (NDVI)—to enhance

the detection of specific features like vegetation health and coverage (Campbell & Wynne, 2011; NASA,

2019). The 𝑁𝐷𝑉 𝐼 uses red light and near-infrared (NIR) to distinguish green vegetation. Higher𝑁𝐷𝑉 𝐼 values indicate green vegetation as more red light is absorbed, whereas lower values correspond

to non-vegetated areas where more red light is reflected.
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Figure 2.3: Spectral signatures of soil, green vegetation, and water across different wavelengths, repre-
senting the portion of incident radiation that is reflected by each material as a function of wavelength.
The grey bands indicate the spectral ranges (channels) of Landsat TM satellite. Bands 1-3 capture
visible light (Blue, Green, Red), Band 4 captures near-infrared (NIR), and Bands 5 and 7 cover parts
of the intermediate infrared spectrum. These spectral bands allow for the differentiation of various
surface materials based on their unique reflectance properties —source: Siegmund and Menz (2005) as
cited and modified by SEOS (2014).

2.2 Machine Learning

Machine learning techniques such as neural networks, random forests, and support vector machines have

long been applied for spatial data analysis and geographic modelling (Haddaway et al., 2022; Lavallin

& Downs, 2021). Compared to using indices alone, machine learning techniques enhance the accuracy

and efficiency of data analysis and interpretation processes, making it possible to analyze large volumes

of data effectively. This is particularly useful for handling the high complexity and dimensionality of

remote sensing data. In recent years, the application of machine learning techniques in remote sensing

has surged, driven by the increasing availability of large datasets and advancements in computational

power (UN-GGIM:Europe, 2019; Y. Zhang et al., 2022).

These machine learning models can be grouped into four main types according to the aims of analyses:

classification, clustering, regression, and dimension reduction. Table 2.1 describes this grouping and

gives examples. It is important to note that recent trends in machine learning and remote sensing

analyses use hybrid or ensemble approaches using a combination of these groups, for a thorough review

of these methods see UN-GGIM:Europe (2019).
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Table 2.1: Categories of machine learning methods grouped according to the analytic aim.

Analysis aim Explanation

Classification Assigning objects to known classes based on input variables. For example, categorizing
pixels in an image into crop types using a model trained on known data.

Regression Predict a numeric (discrete or continuous) response variable based on input variables,
similar to classification but with numeric outputs. An example is predicting crop yield
from Earch Observation image data.

Clustering Groups objects based on input variables without pre-defined classes, identifying similarities
among the objects. This can help in grouping pixels in an image for further inspection.

Dimension
reduction

Reduces a large set of variables to a smaller set that retains most of the original
information. This can simplify analysis or generate new variables like indices (e.g.,
Vegetation Index) for interpretation.

Note:
Adapted from UN-GGIM:Europe (2019) and Haddaway et al.(2022).

Performance metrics are used to verify these analyses, which for classification tasks involve creating

a confusion matrix — a cross-tabulation of class labels assigned to model predictions and reference

data (ground truth). In a confusion matrix, the correctly classified instances are on the diagonal, and

the off-diagonal cells indicate which classes are confused (i.e., incorrectly classified). In remote sensing

applications, accuracy assessments are undertaken on a pixel, group of pixels (e.g. block), or an object

level (Stehman & Foody, 2019).

Table 2.2: Confusion matrix of four classes

Predictions

Reference Class 1 Class 2 Class 3 Class 4 Total Producer’s accuracy

Class 1 𝑚11 𝑚12 𝑚13 𝑚14 𝑚1. 𝑚11/𝑚1.
Class 2 𝑚21 𝑚22 𝑚23 𝑚24 𝑚2. 𝑚22/𝑚2.
Class 3 𝑚31 𝑚32 𝑚33 𝑚33 𝑚3. 𝑚33/𝑚3.
Class 4 𝑚41 𝑚42 𝑚43 𝑚44 𝑚4. 𝑚44/𝑚4.
Total 𝑚.1 𝑚.2 𝑚.3 𝑚.4 𝑚
User’s accuracy 𝑚11/𝑚.1 𝑚22/𝑚.2 𝑚33/𝑚.3 𝑚44/𝑚.4

Note:
The rows (𝑟) represent the reference (observed) classification and the columns (𝑐) represent the
predicted classes. 𝑚𝑟𝑐 is the number of instances in reference (observered) class 𝑟 and predicted
class 𝑐, and 𝑚 is the total number of instances (i.e., the number of pixels/objects classified).

From this matrix, performance measures such as overall accuracy are derived (FAO, 2016; Stehman
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& Foody, 2019; UN-GGIM:Europe, 2019) where the overall accuracy is the total number of successful

classifications 𝑠 over the total number of instances, 𝑚 (𝑞 is the number of classes).

Overall Accuracy (OA) = ∑𝑞𝑟=1 𝑚𝑟𝑟𝑚 = 𝑠𝑚 (2.1)

If the unit of accuracy assessment is a pixel, then overall accuracy is the proportion of pixels classi-

fied correctly. Other metrics include reliability (User’s accuracy) and sensitivity (recall or Producer’s

accuracy). Reliability is the correct classification for a particular class divided by the column total

(𝑚.𝑐), and sensitivity is the correct classification over the row total (𝑚𝑟.). It is important to consider

the map’s purpose when evaluating its accuracy, as overall accuracy may not reflect the accuracy of

specific classes. Factors such as sample size, class stability, class proportions, and landscape variability

influence the overall accuracy (FAO, 2016; see UN-GGIM:Europe, 2019).

2.3 Australia Land Cover Mapping

As an example of how remote sensing data and machine learning can be used to support ecologically

sustainable development, Owers et al. (2022) developed an approach to monitor and map land cover

across Australia using techniques. Their study used Landsat sensor data archived through Digital Earth

Australia to generate annual land cover maps from 1988 to 2020 at a 25-meter resolution. The study

used random forest and artificial neural networks to classify individual pixels according to the FAO’s

Land Cover Classification System (LCCS) framework.

Figure 2.4: Land cover mapping created by Owers et al. (2022) using Landstat data to make continent-
wide classifications using the LCCS frame work which differentiates six (classes) land cover types:
cultivated terrestrial vegetation (CTV), natural terrestrial vegetation (NTV), natural aquatic vegetation
(NAV), artificial surfaces (AS), bare surfaces (BS), and water bodies (W).
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Producing such detailed maps through traditional topographical field surveys would be impractical,

given Australia’s size (7, 688, 287 km2). While field surveys are considered the most accurate method

for generating training sample data, they are labor-intensive, time-consuming, and costly (C. Zhang &

Li, 2022). For example, surveying just 20 hectares (0.2 km2) would take a team of four people approx-

imately five days to complete, though the resulting topographical map would have a high resolution of

0.5 meters (L.A. Mbila, personal communication, January 26, 2024). In Owers et al. (2022), experts

visually inspected the satellite imagery to validate the training and test data. While this method is less

labor-intensive, costly, and time-consuming than field surveys, it still demands significant effort and

expertise.

In contrast to the limitations of field surveys, remote sensing provides an efficient means for continu-

ously monitoring large, often inaccessible areas (Owers et al., 2022; C. Zhang & Li, 2022). The potential

applications of this technology are vast, including land use and degradation monitoring, forestry, biodi-

versity assessment, agriculture, disaster prediction, water resource management, public health, urban

planning, poverty tracking, and the management and preservation of world heritage sites (Anshuka et

al., 2019; Campbell & Wynne, 2011; Ekmen & Kocaman, 2024; O. Hall et al., 2023; Lavallin & Downs,

2021; Maso et al., 2023).

2.4 Previous Reviews

Numerous studies have previously examined the application of remote sensing for SDG monitoring.

However, existing reviews are typically either limited to specific contexts, such as the use of satellite

data for poverty estimation (O. Hall et al., 2023) or focus on descriptive results (see Yin et al., 2023).

The existing reviews either apply methodology that aligns more closely with Synthesis Without Meta-

Analysis (Campbell et al., 2020) —for example, Thapa et al. (2023) and Ekmen & Kocaman (2024) —

or apply unweighted meta-analysis techniques, such as Khatami et al. (2016) and O. Hall et al. (2023).

In an unweighted meta-analysis all studies are treated equally regardless of their sample size, quality,

or variance (J. A. Hall & Rosenthal, 2018). However, it is more common in traditional applications

of meta-analysis, to use the sample sizes when aggregating individual studies (J. A. Hall & Rosenthal,

2018). However, to my knowledge, no examples of a weighted meta-analysis applied to predictive

performance in remote sensing data have been conduced, highlighting a gap that this study aims to

address.
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Methods
The methods adopted in this study are outlined in steps following the framework proposed by Debray

et al. (2017). Additionally, efforts were made to follow the Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA) guidelines (Page et al., 2021), however due to the nature of this

research, strict adherence was not always possible. For the statistical analyses metafor (Viechtbauer,

2010) and dmetar (Harrer et al., 2019) packages were used. The code was executed using R version

4.2.3 (2023-03-15).

3.1 Formulating the review question and protocol

The PICOTS (population, intervention, comparison, outcome, timing, and setting) system was used

to frame the review aims for this analysis (Debray et al., 2017). As outlined by Table 3.1, using

this framework, the research question was formulated to examine (1) the overall performance (2) and

heterogeneity of machine learning models applied to remote sensing in the context of SDGs, and (3) to

assess the influence of specific study features on model performance.

Table 3.1: PICOTS framework

Item Explanation

Population Studies monitoring SDGs.
Intervention Application of machine learning models to remote sensing data.
Comparison Comparison of different ML models and methodologies used in remote sensing

applications.
Outcomes Variability in the overall accuracy of machine learning models in monitoring

SDGs.
Timing Studies that focused on predicting current conditions rather than predicting

future changes
Setting Various geographic locations and environmental settings where remote

sensing data is applied for SDG monitoring.

Note:
PICOTS framework items and the corresponding role in structuring this review.

To address this question, peer-reviewed articles published between January 2018 and December 2023

were gathered (on January 15 and 16, 2024) from several academic databases, including ScienceDirect

and Taylor & Francis Online, as shown in Figure 3.3. The search terms were “remote sensing AND

9



machine learning AND sustainable development goals”. The search results from these databases were

downloaded in RIS format and imported into Zotero for further processing. Duplicate articles were

handled using Zotero’s “merge duplicates” function.

Several academic databases were used to reduce potential bias from database coverage (Hansen et al.,

2022a; Tawfik et al., 2019). While Google Scholar can be useful for supplementary searches and grey

literature, it is generally considered unsuitable as the primary source for systematic reviews (Gusenbauer

& Haddaway, 2020). Furthermore, Google Scholar search results are not fully reproducible (Gusenbauer

& Haddaway, 2020) and search result references that cannot be downloaded in batches, therefore the

decision was made not to use Google Scholar to search for papers.

3.2 Specific inclusion and exclusion criteria

After removing review articles and non-research papers, a total of 811 relevant articles remained. Of

these potentially relevant papers, 35% were published in 2023, highlighting the growth of research in

this field. The trend, as illustrated in Figure 3.1, is consistent with other similar research, for example,

Ekmen & Kocaman (2024), which reported a sharp increase in publications related to machine learning

and remote sensing for SDG monitoring.
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Figure 3.1: Publication increase between 2018 and 2022.

Due to the large number of papers remaining, a random sample of 200 articles was drawn for title and

abstract screening. These potentially relevant articles were screened independently by three reviewers

(the author and two internal supervisors) using the R package metagear (Lajeunesse, 2016). The papers

were selected according to the following criteria: a) publications utilizing remote sensing and machine

learning techniques, (b) indication of a quality assessment for example overall accuracy. Table 3.2 shows
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the words highlighted in the abstract screening phase to aid the reviewers and Figure 3.2 shows the

user interface highlighting these keywords.

Table 3.2: Keywords highlighted by the metagear user interface during abstract screening phase as a
visual cue to speed up the screening process

Category Keywords

General empirical, result, predictive, analysis, sustainable development goal,
sustainable development

Data related remotely sensed, remote sensing, satellite, earth observation
Models deep learning, machine learning, classification, classifier, regression,

supervised, test set, training set, cart, svm, rf, ann, random forest,
support vector machine, regression tree, decision tree, neural network,
boosting, bagging, gradient, bayes

Quality metrics overall accuracy, accuracy, coefficient of determination, rmse, mse, f1,
precision, auc, roc, recall, sensitivity, specificity, mean absolute error,
error, mae

To omit systematic review, meta-analysis, review

Figure 3.2: Metagear graphical user interface: Example of the metagear abstract screener interface
highlighting keywords. On the bottom left the reviewer can select whether the paper is relevant.
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As shown in Figure 3.3, of the 200 abstracts screened 57 were deemed potentially relevant by all

three reviewers. To have comparable performance metrics it decided to focus on papers related to

classification. The titles and abstracts of the 57 articles were screened using metagear dividing them to

classification (40) and regression (17) papers. In the 40 papers, overall accuracy was the most commonly

reported outcome metric and therefore it was decided to include all papers that report overall accuracy.

Figure 3.3: PRIMSA flow diagram of manuscript selection. The records were identified from databases
including Web of Science (WOS), ScienceDirect, PubMed, Journal Storage (JSTOR), American Geo-
physical Union Publications (Agupubs), EBSCO, IEEE Xplore, Multidisciplinary Digital Publishing
Institute (MDPI), ProQuest, and Taylor & Francis Online (Tandfonline), no papers were gathered
from official registers.
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3.3 Feature collection

Using the selected papers and previous systematic reviews a list of potential study features was created

and structured in a table for data extraction. Table 3.3 outlines all the extracted features and study

identification information. The features in the table are grouped according to their use in the analysis.

The most frequently reported performance metric, overall accuracy is used as the effect size of interest.

The sample size (𝑚) is important for the weighted meta-analysis and was also used as a feature, as

larger sample sizes should influence overall accuracy. The other features describe the methodology and

data characteristics, which provide information about the complexity of the classification tasks (e.g., the

number of output classes) and the proportion of the majority class, indicating potential class imbalance

issues that can affect the performance of classification models. Remote sensing-specific information was

also gathered, including the type of devices, spectral bands, and spatial resolution to assess how data

collection impacts performance. Of the extracted features, the number of spectral bands and spatial

resolution were categorized due to high levels of non-reporting. The type of remote sensing device was

excluded because only one study did not use satellite data, and the specifics of the spectral bands used

were too different to make meaningful groups. Several potentially useful features were not recorded,

including temporal resolution (the frequency of data collection) and pre-processing steps, which also

impact the performance of the model. These were excluded as the differences between papers were too

large to make groups. The number of citations was gathered using the Local Citation Network web app,

which collects article metadata from OpenAlex—a bibliographic catalogue of scientific papers (Priem

et al., 2022)1.

1The idea to add the number of citations was added after the analysis was mostly completed. This suggestion was
made during a discussion of the project after the preliminary results were presented to the methodology team at the CBS.
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Table 3.3: Extracted features

Feature Definition Ranges/Categories Adopted

Study Identification and Information
DOI Paper ID -
Authors Name(s) of authors First author and publication year used as study

label.
Title Title of the article -
Publication Name Name of journal that published the paper -
Location Location of the data used (country level) -

Used in Intercept-only Model
Overall Accuracy Effect size of interest 0.65 - 1.00
Sample Size The sample size (i.e.: number of pixels, or objects) 259 - 75,782,016

Features Added to Mixed Effect Model
Publication Year Year of publication 2018 - 2023
SDG Theme Area of research SDG2: Zero Hunger, SDG11: Sustainable Cities,

SDG15: Life on Land
Classification Type Unit of analysis in the primary study Object-level, Pixel-level, Unclear
Model Group Exact algorithm recorded, grouped for analysis Tree-Based Models, Neural Network, Other
Ancillary Data Use of non-RS data in the model Remote Sensing Only, Ancillary Data Included
Indices Use of indices to enhance analysis Used, Not Used
Remote Sensing Type Category of remote sensing Active, Passive, Combined, Not Reported
Device Group Specific device extracted, then grouped Landsat, Sentinel, Other, Not Reported
Number of Spectral Bands Number of spectral bands used Low, Mid, Not Reported
Spatial Resolution Spatial resolution in meters 30, 15-25, 10, <1, Not Reported
Confusion Matrix Whether a confusion matrix was present Reported, Not Reported
Number of Classes The number of classes predicted 2 - 13
Majority-class Proportion The proportion of the largest class 0.142 - 0.995
Number of Citations Number of times the study has been cited 0 - 68

Features Excluded
Device Type of remote sensing device Satellite, Aerial Photographic Images
Spectral Bands Special bands used -

Note:
The intercept-only model and mixed effect model are described in the following section.
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3.4 Statistical analysis

A meta-analysis is a statistical method that aggregates results from several primary studies to assess

and interpret the collective evidence on a specific topic or research question. Specifically, the aim is to

(a) determine the summary effect, (b) establish the degree of heterogeneity between effect sizes, and (c)

access if study characteristics can explain any of the heterogeneity of the effect sizes (Cheung, 2014).

In this case the effect size (dependent variable) of interest is the overall accuracy. Let ̂𝜃𝑖𝑗 be the 𝑖−th

observed effect size in study 𝑗 (where 𝑖 = 1, ..., 𝑘𝑗, 𝑗 = 1, ..., 𝑛). From Equation 2.1, the overall accuracy

is the proportion of correctly classified instances, therefore, the effect size is:

̂𝜃𝑖𝑗 = 𝑠𝑖𝑗𝑚𝑖𝑗𝑣𝑖𝑗 = ̂𝜃𝑖𝑗(1 − ̂𝜃𝑖𝑗)𝑚𝑖𝑗
(3.1)

𝑠𝑖𝑗 is the number of successful predictions and 𝑚𝑖𝑗 is total number of pixels or objects classified, and𝑣𝑖𝑗 is the variance.

Weighted Approach

Before conducting the meta-analysis, first the structure of the collected data and assumption of indepen-

dence of effect sizes need to be addressed. In the context of this research, dependencies are introduced

since all reported effect sizes from each study are included. The degree of dependence between ef-

fect sizes can be categorized as either known or unknown (Cheung, 2014). Multivariate meta-analytic

techniques use known dependencies reported in the primary studies, such as reported correlation coeffi-

cients (Cheung, 2014). However, dependency estimates between outcomes are rarely reported (Assink

& Wibbelink, 2016). Therefore, to model these unknown dependencies a 3-level random-effects meta-

analytic model is used (Cheung, 2014). The three-level meta-analysis approach models three different

variance components distributed over three levels:

At level 1, the sampling variance of the effect sizes is modelled as:

Level 1: ̂𝜃𝑖𝑗 = 𝜃𝑖𝑗 + 𝜖𝑖𝑗,𝜖𝑖𝑗 ∼ 𝒩(0, 𝑣𝑖𝑗). (3.2)

The observed overall accuracy ̂𝜃𝑖𝑗 is an estimate of overall accuracy from experiment 𝑖 in study 𝑗 and is

modelled as the true overall accuracy, 𝜃𝑖𝑗 and error component 𝜖𝑖𝑗 which is normally distributed with

mean 0 and known variance 𝑣𝑖𝑗. A model that only takes into account sampling variance is referred to

as a fixed-effects model, where it is assumed that all studies included in the meta-analysis share a single
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true effect size, and therefore, the only source of variation between effect sizes is the sampling variance.

The fixed-effects model assumes homogeneity across studies and allows for conditional inference about

the specific set of studies included in the analysis, without accounting for variability that might arise

from differences between studies. The inclusion of the random effects (at level 2 and 3) means that

as well as sampling variance, the heterogeneity due to differing between and within study features are

also taken into account (Harrer et al., 2022; Schwarzer et al., 2015, p. 34; Wang, 2023). Therefore, the

addition random effect components allow one to make unconditional inferences about the population

from which the included studies are a random sample.

At level 2, within-study heterogeneity (𝜎2
level2) is modelled as:

Level 2: 𝜃𝑖𝑗 = 𝜅𝑗 + 𝜁𝑖𝑗,𝜁𝑖𝑗 ∼ 𝒩(0, 𝜎2
level2). (3.3)

The true overall accuracy 𝜃𝑖𝑗, is modelled as the average overall accuracy 𝜅𝑗 of study 𝑗 and study-specific

heterogeneity 𝜁𝑖𝑗 which is normally distributed with mean 0 and variance 𝜎2
level2.

Lastly, level 3, the variance between heterogeneity (𝜎2
level3) is modelled as:

Level 3: 𝜅𝑗 = 𝜇 + 𝜉𝑗,𝜉𝑗 ∼ 𝒩(0, 𝜎2
level3). (3.4)

The average overall accuracy 𝜅𝑗 of study 𝑗 is modelled as the average population effect 𝜇 and between-

study heterogeneity 𝜉𝑗, which is normally distributed with mean 0 and variance 𝜎2
level3. Combined, the

three-level meta-analysis models the observed effect size modelled as the sum of the average population

effect 𝜇 and these three error components:̂𝜃𝑖𝑗 = 𝜇 + 𝜉𝑗 + 𝜁𝑖𝑗 + 𝜖𝑖𝑗. (3.5)

For the expected value of the observed effect size to be the population average, 𝔼( ̂𝜃𝑖𝑗) = 𝜇, the ran-

dom effects at the different levels and the sampling variance are assumed independent: Cov(𝜉𝑗, 𝜁𝑖𝑗) =
Cov(𝜉𝑗, 𝜖𝑖𝑗) = Cov(𝜁𝑖𝑗, 𝜖𝑖𝑗) = 0. Therefore, unconditional sampling variance of the effect size is the sum

of level 3 and level 2 heterogeneity, and the known sampling variance: Var( ̂𝜃𝑖𝑗) = 𝜎2
level3 + 𝜎2

level2 + 𝑣𝑖𝑗,
the effect sizes within the same study share the same covariance Cov( ̂𝜃𝑖𝑗, ̂𝜃𝑙𝑗) = 𝜎2

level3, and the effect

sizes in different studies are independent Cov( ̂𝜃𝑖𝑗, ̂𝜃𝑧𝑢) = 0 (Cheung, 2014)2.

The random-effects model can be extended to a mixed-effects model (also referred to as a meta-
2Like 𝑖, 𝑙 refers to an effect size within the same study 𝑗. 𝑧 and 𝑢 refer to effect sizes in different clusters, where 𝑢 ≠ 𝑗

effect sizes are independent.
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regression) by including study features as covariates (predictors). Let 𝑥 denote the value covariate,

where 𝑏′ refers to the number of covariates included in the model. These covariates can be either 𝑥𝑖𝑗
for a level-2 covariate or 𝑥𝑗 for a level-3 covariate. The mixed-effect model defined as:̂𝜃𝑖𝑗 = 𝜇 + 𝛽1𝑥𝑖𝑗1 + .... + 𝛽𝑏′𝑥𝑗𝑏′ + 𝜉𝑗 + 𝜁𝑖𝑗 + 𝜖𝑖𝑗 (3.6)

The assumptions for Equation 3.6 remain the same as Equation 3.5, but the heterogeneity (𝜎2
level3, 𝜎2

level2)

is the variability among the true effects which is not explained by the included covariates (Cheung,

2014; Viechtbauer, 2010). The aim of the mixed-effects model is to examine the extent to which the

included covariates in the model influence the overall summary effect (population average) 𝜇 and the

heterogeneity 𝜎2
level3 and 𝜎2

level2 (Viechtbauer, 2010). Figure 3.4 illustrates this structure of the three-

level random-effects meta-analysis model used to account for both within-study and between-study

heterogeneity.

Figure 3.4: Three-level random-effects meta-analysis model. At level 1, observed effects ̂𝜃𝑖𝑗 are modeled
with known sampling variance 𝑣𝑖𝑗, where larger sample sizes 𝑚𝑖𝑗 have smaller sampling variances,
represented by the narrower distribution around ̂𝜃1𝑗 compared to ̂𝜃2𝑗. At level 2, the true effects 𝜃𝑖𝑗,
from each study are modeled as normally distributed with mean 𝜅𝑗 and within-study variance 𝜎2

level2.
Lastly, at level 3, study average effects are modeled as normally distributed with mean 𝜇 and between-
study variance 𝜎2

level3.
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In this way, meta-analytic models are essentially, special cases of the general linear (mixed effects)

model with heteroscedastic sampling variances which are assumed to be known (Viechtbauer, 2010).

Therefore, the random- and mixed-effects models are fit by first by estimating the amount of (residual)

heterogeneity (𝜎2
level2 and 𝜎2

level3), and then, the parameters defined above are estimated via weighted

least squares with weights. There are several methods to estimate 𝜎2
level2 and 𝜎2

level3 heterogeneity

— see Veroniki et al. (2015) for different methods and specifics. This study uses the (restricted)

maximum likelihood method (ML and REML). The estimated heterogeneity terms are then used to

aggregate the primary study results using inverse-variance weighting (Borenstein et al., 2009). In

inverse-variance weighting, the effect size estimates with the lowest variance (higher sample sizes) are

given more weight because they are more precise (Viechtbauer, 2010). If the model was only taking

into account the sampling variance then the weights are equal to 𝑤𝑖𝑗 = 1/𝑣𝑖𝑗. In this case there are

three sources of heterogeneity the sum of which the is the model implied variances of the estimates:𝑤𝑖𝑗 = 1/(�̂�2
level3 + �̂�2

level2 + 𝑣𝑖𝑗). However, covariance between the effects needs to be taken into account,

therefore the marginal variance-covariance matrix of the estimates.

To calculate the weights, let y be a the vector of observed effects ( ̂𝜃𝑖𝑗) of length 𝑘 (y = ̂𝜃1, ....., ̂𝜃𝑘). The

observations are organized as a series of independent groups, where the marginal variance-covariance

matrix (M) of the estimates account for the variance structure of the data. Since the effect sizes from

different studies are assumed to be independent, the matrix takes a block-diagonal form. Where each

block corresponds to a single study, with the diagonal elements representing the total variance for

each outcome, and the off-diagonal elements within each block representing the shared between-study

variance. The blocks themselves are independent, reflecting the assumption that there is no covariance

between outcomes from different studies.

M =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̂�2
level3 + �̂�2

level2 + 𝑣1 �̂�2
level3 ... 0 0�̂�2

level3 �̂�2
level3 + �̂�2

level2 + 𝑣2 ... 0 0⋮ ⋮ ⋱ ⋮ ⋮0 0 ... �̂�2
level3 + �̂�2

level2 + 𝑣k-1 �̂�2
level30 0 ... �̂�2

level3 �̂�2
level3 + �̂�2

level2 + 𝑣k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.7)

Let W = M−1 be the weight matrix, where, 𝑤𝑟𝑐 correspond to the 𝑟-th row and the 𝑐-th column of

W and let ̂𝜃𝑟 denote the 𝑟-th estimate, with 𝑟 = 1, ...., 𝑘3. Then the estimate of summary effect size ̂𝜇
for the random-effects model, without covariances, i.e., intercept-only model, is given by (Pustejovsky,

2020; Viechtbauer, 2020)
3From this point the index 𝑟 is used for conciseness rather than indexing for the effect size number within each study.
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̂𝜇 = ∑𝑘𝑟=1(∑𝑘𝑐=1 𝑤𝑟𝑐) ̂𝜃𝑟∑𝑘𝑟=1 ∑𝑘𝑐=1 𝑤𝑟𝑐
with�̄�2 = Var( ̂𝜇) = 1∑𝑘𝑟=1 ∑𝑘𝑐=1 𝑤𝑟𝑐

(3.8)

This is equivalent to the generalized least squares estimate for the fixed effects (Viechtbauer, 2020);

b = (X′WX)−1X′Wy (3.9)

X is the design matrix corresponding to the fixed effects, in the random-effects model case this is a

single column of 1’s as there are no predictors, but in the mixed effects model, X has 𝑏′ +1 columns. In

the mixed effects case the estimated parameters are 𝜇 and 𝑏′’s in b. Following the recommendation of

Assink & Wibbelink (2016), t-distribution was applied to assess the significance of individual regression

coefficients in meta-analytic models, as well as to construct confidence intervals.

Heterogeneity tests

To assess the significance of heterogeneity in the true effect sizes, the Cochran’s Q statistic is used, with

the null hypothesis assuming homogeneity of effect sizes. As defined by Cheung (2014):𝐻0 ∶ 𝜃𝑟 = 𝜃𝑄 = 𝑘∑𝑟=1 𝑤𝑟( ̂𝜃𝑟 − ̂𝜇fixed)2
where 𝑤𝑟 = 1𝑣𝑟 ,̂𝜇fixed = ∑𝑘𝑟=1 𝑤𝑟 ̂𝜃𝑟∑𝑘𝑟=1 𝑤𝑟

(3.10)

Under the null hypothesis Cochran’s 𝑄 has an approximate chi-squared distribution with 𝑘 − 1 degrees

of freedom. Note, under the null hypothesis there are no cluster effects (no effect of the dependence)

therefore the random effect terms are not considered for 𝑤𝑟 (Cheung, 2014). The magnitude hetero-

geneity can be assessed using Higgins and Thompson (2002) 𝐼2, which reflects the proportion of total

variation that is not attributable to sampling error (i.e., due to within- and between- study heterogene-

ity). Therefore 𝐼2
level2 and Level 3 𝐼2

level3 are defined as follows (Cheung, 2014):
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𝐼2
level2 = �̂�2

level2�̂�2
level2 + �̂�2

level3 + ̃𝑣
𝐼2

level3 = �̂�2
level3�̂�2

level2 + �̂�2
level3 + ̃𝑣

(3.11)

where ̃𝑣 is the typical sampling variance. Since the sampling variance differ across studies the typical

variance is needed to estimate the magnitude. There are different ways to define the total variation

(Cheung, 2014). Here ̃𝑣 defined using Higgins and Thompson (2002):

̃𝑣 = (𝑘 − 1) ∑𝑘𝑟=1 1𝑣𝑟(∑𝑘𝑟=1 1𝑣𝑟 )2 − ∑𝑘𝑟=1 1𝑣2𝑟 (3.12)

Lastly, the percentage of variance explained by the mixed-effects can be quantified using 𝑅2 (Cheung,

2014); 𝑅2
level2 = 1 − �̂�2

level2(1)�̂�2
level2(0)

𝑅2
level3 = 1 − �̂�2

level3(1)�̂�2
level3(0)

(3.13)

where, the variance is compared before(0) and after(1) including predictors.

Model Selection

The multi-model inference function from the R package dmetar was used to select the best combination

of covariates (i.e., the best model). Instead of sequentially adding or removing covariates (step-wise

regression methods) this technique models all possible covariate combinations. The number of models

fit depends on the number and type of covariates; for 𝑏 numeric or binary covariates, 2𝑏 models are

generated, however, if categorical covariates have multiple levels, the total models increase accordingly

— e.g., for 3 categorical variables with 4 levels each and 2 numeric covariates, 43 × 22 (256) models

would be fit.

The models are then compared using an information-theoretic approach such as Akaike’s Information

Criterion (AIC) (Harrer et al., 2022, Chapter 8). The dmetar package uses the AIC𝑐 (Corrected

Akaike Information Criterion). The AIC𝑐 accounts for small sample sizes, a frequent scenario in meta-

analyses or subgroup analyses; in large samples, AIC𝑐 converges to the AIC, so the difference between

them diminishes as the sample size increases. AIC(𝑐) provides a means for model comparison by

balancing model fit with the complexity of the model, where lower AIC values indicate better-performing
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models. In addition to the AIC𝑐, the importance of each covariate is assessed, by summing the Akaike

weights (or probabilities) of the models in which the covariate appears (Viechtbauer, 2022). Covariates

that frequently appear in high-weight models are assigned higher importance values, indicating their

consistent inclusion in the best-performing models(Harrer et al., 2022, Chapter 8; Viechtbauer, 2022).

It is important to note that the models will be refit from an REML to ML to make these comparisons

(see Harrer et al., 2022, Chapter 8).

Unweighted Approach

The unweighted least squares gives an estimate of the simple (unweighted) average of the population

effect, given by (Laird & Mosteller, 1990)

̂𝜇
unweighted

= ∑ ̂𝜃𝑟𝑘 (3.14)

Unlike in the weighted approach methods, the observations from the primary studies, ̂𝜃𝑟 are not assumed

to originate from a distribution. The study results are the unit of analysis rather than the sample

components, therefore the level 1 variance component is ignored. The unweighted effects model, focuses

on between-study variance (J. A. Hall & Rosenthal, 2018). It achieves standard meta-analysis goals,

such as describing central tendency, variance, and moderator effects, through an unconditional random

effects approach(J. A. Hall & Rosenthal, 2018). A practical advantage of the unweighted model is that

the effect sizes can be analyzed using standard descriptive and inferential statistics, t-tests, ANCOVA

(see Khatami et al., 2016) and regression(see O. Hall et al., 2023).

Assumption of normality

It is important to note that the methods outlined above assume that the distribution the effect sizes is

approximately normal. If the number of studies collected is sufficiently large and the observed propor-

tions are centred around 0.5, proportions follow an approximately symmetrical binomial distribution,

making the normal distribution a good approximation (Wang, 2023). However, in practice observed

proportional data is rarely centred around 0.5 (Wang, 2023). In this context in particular, the distri-

bution of overall accuracy is likely skewed to the left as models are designed to maximize predictive

power. Although the performance is dependent on the complexity and the quality of the data and

some models could perform worse than random, their accuracies will not be much lower than 0.5, while

well-performing models can achieve significantly higher accuracies, causing the center of accuracies to

be pulled toward 1. In Khatami et al. (2016), the range of collected overall accuracy was between14.0 to 98.7%, with a median overall accuracy of 81.1% (IQR = 68.9, 89.7).
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To address skewed observed proportions, transformation methods are applied, most commonly the logit

or log-odds transformation. However, this method may not be appropriate in cases where the observed

proportions are extremely low (near 0) or extremely high (near 1), as the transformations and their

sampling variances can become undefined. In such cases, the Freeman-Tukey (FT) transformation is

more appropriate, providing a more robust approach to dealing with skewed distributions of overall

accuracy, especially when dealing with extreme values (Borges Migliavaca et al., 2020; Wang, 2023).

The FT transformation is calculated as (Freeman & Tukey, 1950; Viechtbauer, 2024a):

̂𝜃FT𝑟 = 𝑔( ̂𝜃𝑟) = 12 ⋅ (arcsin√ 𝑠𝑟𝑚𝑟 + 1 + arcsin√ 𝑠𝑟 + 1𝑚𝑟 + 1) (3.15)

where ̂𝜃FT𝑟 denotes the transformed ̂𝜃𝑟, with variance:

Var( ̂𝜃FT𝑟 ) = 𝑣𝑟 = 14𝑚𝑟 + 2 (3.16)

These transformed parameters replace Equation 3.1, while the rest of the analysis remains the same.

To return to the pooled effect sizes natural scale, the Barendregt et al. (2013) back transformation is

used, as instructed by Wang (2023):

̂𝜇 = 12 ⎛⎜⎝1 − sign(cos(2 ̂𝜇FT)) ⋅ √1 − (sin(2 ̂𝜇FT) + sin(2 ̂𝜇FT) − 1/sin(2 ̂𝜇FT)1/𝜎2
FT

)2⎞⎟⎠ (3.17)

where ̂𝜇FT is the summary statistic — pooled overall population average— and �̄�2
FT is the pooled

variance, from Equation 3.8 but in the transformed scale (Wang, 2023).

22



Results

4.1 Descriptive Statistics

A total of 𝑛 = 20 studies with 𝑘 = 86 effect sizes were included in this analysis, with each primary

study reporting between one and 27 results (1 ≤ 𝑘𝑗 ≤ 27). The research area of these studies span 18

countries; Figure 4.1 shows a map indicating the location of each effect size. These primary studies

were grouped into three different SDG goals: SDG 2 Zero Hunger, SDG 11 Sustainable Cities, and

SDG 15 Life on Land.

Map of researched locations
A

Priyanka et al. 2023
Li et al. 2022

Fagua et al. 2023
Owers et al. 2022
Agrillo et al. 2021

Suryono et al. 2022
Peng et al. 2022

Jochem et al. 2018
Shaharum et al. 2020

Pareeth et al. 2019
Wang et al. 2023

Tao et al. 2019
Xia et al. 2022

Shen et al. 2023
Al−Dousari et al. 2023

Jia et al. 2023
Aja et al. 2022

Mashaba−Munghemezulu et al. 2021
Solórzano et al. 2023

Nazir et al. 2020

0.7 0.8 0.9 1.0
Observed Overall Accuracy

SDG11: Sustainable Cities SDG15: Life on Land SDG2: Zero Hunger

Reported overall accuracy by study
B

Figure 4.1: A. Country of research interest of the primary study. B. Range of reported overall accuracy,
individual outcomes shown as points and mean overall accuracy represented by triangles. In both plots
points are colour-coded by SDG goal.

Figure 4.1 and Table 4.1 (bellow) show the reported overall accuracies are not centered around 0.5.
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Therefore, a transformation is required. Figure 4.2 shows the distribution of observed overall accuracy

as well as the logit and FT transformation values. FT visually performs better than the Logit transfor-

mation. However, the Shapiro-Wilk Normality test shows that the distribution of the FT transformed

overall accuracy still departed significantly from normality (𝑊 = 0.93, p-value < 0.01). Nevertheless,

conducting a meta-analysis remains justified, as these statistical models are generally robust against

violations of normality (McCulloch & Neuhaus, 2011).
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Figure 4.2: Distribution of the observed overall accuracy and transformed by logit and FT transforma-
tion.

Table 4.1 summarises the overall accuracy (effect size of interest), study sample size and the collected

study features, including the study features such as sample size, overall accuracy, types of machine

learning models used and SDG goal targeted. For the meta-analysis the range of the sample size (259

- 75782016) and overall accuracy (0.6504 - 1) are of importance. Most studies used Neural Networks

(48%), followed by Tree-Based Models (45%), and a small portion used other types of models (7%).

Regarding SDGs, 44% of the studies aimed at SDG 11 (Sustainable Cities), 43% targeted SDG 15

(Life on Land), and 13% focused on SDG 2 (Zero Hunger). Figure 4.3 and Figure 4.3 visualise the

distribution of these features.
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Table 4.1: Summary table

Feature Statistic
Overall Accuracy 0.90 (0.65 - 1.00)
Study Features
Numeric

Sample Size 6,401,352 (259 - 75,782,016)
Number of Citations 15 (2 - 68)
Number of Classes 4 (2 - 13)
Majority-class Proportion 0.72 (0.14 - 1.00)
Publication Year
2018 7 (8.1%)
2019 4 (4.7%)
2020 30 (35%)
2021 6 (7.0%)
2022 13 (15%)
2023 26 (30%)

Categorical
SDG Theme

SDG11: Sustainable Cities 38 (44%)
SDG15: Life on Land 37 (43%)
SDG2: Zero Hunger 11 (13%)

Classification Type
Object-level 46 (53%)
Pixel-level 36 (42%)
Unclear 4 (4.7%)

Model Group
Neural Networks 41 (48%)
Other 6 (7.0%)
Tree-Based Models 39 (45%)

Ancillary Data
Remote Sensing Only 71 (83%)
Ancillary Data Included 15 (17%)

Indices
Not Used 23 (27%)
Used 63 (73%)

Remote Sensing Type
Active 11 (13%)
Combined 7 (8.1%)
Not Reported 7 (8.1%)
Passive 61 (71%)

Device Group
Landsat 15 (17%)
Not Reported 7 (8.1%)
Other 44 (51%)
Sentinel 20 (23%)

Number of Spectral Bands
Low 18 (21%)
Mid 26 (30%)
Not Reported 42 (49%)

Spatial Resolution
<1 metre 7 (8.1%)
10-30 metres 39 (45%)
Not Reported 40 (47%)

Confusion Matrix
Not Reported 23 (27%)
Reported 63 (73%)

Note:𝑎 Effect size of interest. The statistic reported here are mean (range) for numeric𝑏 predictors
and for categorical𝑐 variables number of effect sizes (percentage)

25



SDG2: Zero
Hunger

SDG11:
Sustainable

Cities

SDG15: Life on
Land

1.0 1.2 1.4
FT Transformed Overall Accuracy

SDG Theme

Unclear

Pixel−level

Object−level

1.0 1.2 1.4
FT Transformed Overall Accuracy

Classification Type

Other

Neural Networks

Tree−Based
Models

1.0 1.2 1.4
FT Transformed Overall Accuracy

Model Group

Remote Sensing
Only

Ancillary Data
Included

1.0 1.2 1.4
FT Transformed Overall Accuracy

Ancillary Data

Not Used

Used

1.0 1.2 1.4
FT Transformed Overall Accuracy

Indices

Not Reported

Combined

Passive

Active

1.0 1.2 1.4
FT Transformed Overall Accuracy

Remote Sensing Type

Not Reported

Mid

Low

1.0 1.2 1.4
FT Transformed Overall Accuracy

Number of Spectral Bands

Not Reported

Other

Sentinel

Landsat

1.0 1.2 1.4
FT Transformed Overall Accuracy

Device Group

Not Reported

10−30 metres

<1 metre

1.0 1.2 1.4
FT Transformed Overall Accuracy

Spatial Resolution

Not Reported

Reported

1.0 1.2 1.4
FT Transformed Overall Accuracy

Confusion Matrix

Figure 4.3: Categorical study features
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4.2 Meta-analysis

The forest plot below (Figure 4.5) compares the overall accuracy effect size across studies using both

weighted and unweighted models, with error bars which correspond to the weighted model — at this

scale there is no discernible difference between the error bars of the two models. Each study is given with

the number of estimates per study 𝑘𝑗, and study average effect size (𝜅𝑗), with 95% confidence intervals

(CI), both for the weighted and unweighted model. Of the 20 primary studies included, six reported

only one effect. Based on the unweighted model, the average accuracy of machine learning methods

applied to remote sensing data is 0.90 (95% CI[0.85; 0.94]). While the three-level meta-analytic model

produced an average accuracy of 0.89 (95% CI[0.85; 0.93]). This implies, that on average, the machine

learning methods correctly classify around 90% of the time when applied to remote sensing data.

Figure 4.5: Forest plot for both the weighted and unweighted model. 𝑘𝑗 is number of reported overall
accuracy estimates per study, the corresponding average effect size(𝜅𝑗) and confidence interval per study
for both models is given on the right. The pooled summary effect size based on the three-level RE
meta-analytic and unweighted model are given on the bottom.

The heterogeneity metrics Cochran’s Q indicate significant heterogeneity of the reported overall acccura-

cies. The percentage of the variance attribution is 𝐼2
level3 = 63.62% which is the fraction of the variation

that can be attributed to between-study, and 𝐼2
level2 = 36.38% which is within-study heterogeneity, with
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negligible fixed effect variance (variance due to sampling error). The 𝐼2 value of 100% indicates that all

the observed variability in effect sizes across studies is due to heterogeneity rather than sampling error,

suggesting substantial differences between the studies and a high degree of variation in their results.

Model Selection

Using the multi-model inference function, a total of 31,298 models converged. Figure 4.6, illustrates

the predictor importance after evaluating all possible combinations of predictors to identify which

combination provides the best fit and which predictors are most influential. Higher importance values

indicate more consistent inclusion in high-weight models. The majority class proportion is the most

important predictor, followed by the inclusion of ancillary data. Less influential predictors include the

use of indices, sample size, publication year, and the number of classes in the study. Meanwhile, factors

such as classification type, SDG goal, machine learning group, spatial resolution, and citation count

have minimal importance in the overall model performance (i.e., were not included in the models top

performing models according to AIC𝑐).

Figure 4.6: Model-averaged predictor importance plot with a reference line at 0.8 a commonly used as
a threshold to indicate important predictors.

In the multimodel inference analysis, the five best-performing models were identified based on their

AIC𝑐 scores. The selected top models consistently included key predictors such as the majority-class

proportion and the use of ancillary data. Table 4.2 shows the results of the multi-model inference.

The significant study features are the majority-class proportion and the inclusion of ancillary data.
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Interestingly, the use of ancillary data has a negative effect on overall accuracy in the FT transformed

scale. Table 4.3 shows the five best performing models and the intercept-only model (before adding

the predictors), note that the AIC𝑐 is very similar among the top five. The Akaike weights shown are

derived from the total pool of models.

Table 4.2: Multi-model inference coefficients and feature importance.

Importance Feature (Reference Category) Comparison Category b SE z p
Intercept 1.29 7.85 0.16 0.869
Majority-class Proportion 0.47 0.08 6.15 <0.001

0.92 Ancillary Data (Remote Sensing Only) Ancillary Data Included -0.12 0.05 2.33 0.020
0.39 Indices (Not Used) Used 0.03 0.04 0.67 0.500
0.38 Number of Spectral Bands (Low) Mid 0.05 0.06 0.72 0.471

Not Reported 0.02 0.04 0.55 0.581
0.16 Confusion Matrix (Not reported) Reported 0.01 0.02 0.29 0.776
0.13 Sample Size 0.00 0.00 0.10 0.922
0.11 Number of Classes 0.00 0.00 0.19 0.846
0.10 Publication Year 0.00 0.00 0.06 0.952
0.03 Remote Sensing Type (Active) Passive 0.00 0.02 0.16 0.870

Combined 0.01 0.03 0.17 0.869
Not Reported 0.00 0.02 0.04 0.971

0.02 Spatial Resolution ( <1 metre) 10-30 metres 0.00 0.07 0.01 0.990
Not Reported 0.00 0.07 0.00 0.996

0.02 SDG Theme (SDG11:Sustainable Cities) SDG2: Zero Hunger 0.00 0.01 0.08 0.939
SDG15: Life on Land 0.00 0.01 0.10 0.924

0.02 Classification Type (Object-level) Pixel-level 0.00 0.01 0.06 0.955
Unclear 0.00 0.01 0.05 0.958

0.01 Model Group (Neural Networks) Tree-Based Models 0.00 0.01 0.05 0.961
Other 0.00 0.01 0.04 0.965

 0.00 Device Group (Landsat) Sentinel 0.00 0.01 0.05 0.959
Not Reported 0.00 0.01 0.05 0.956
Other 0.00 0.00 0.05 0.963

Number of Citations 0.00 0.00 0.01 0.995

Note:
Importance of each feature, the reference and comparison categories given with their estimated coefficients(b),
standard errors (SE) on the FT transformed scale with corresponding z- and p-values.
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Table 4.3: Set of 5 best-ranked models and intercept only model ordered by AIC𝑐.

Candidate models df AIC𝑐 Akaike weights
Ancillary Data + Majority-class Proportion + Indices 5 -115.46 0.39

Ancillary Data + Majority-class Proportion + Number of
Spectral Bands

6 -114.42 0.23

Ancillary Data + Majority-class Proportion 4 -114.13 0.20

Ancillary Data + Confusion Matrix + Majority-class
Proportion + Number of Spectral Bands

7 -113.08 0.12

Ancillary Data + Majority-class Proportion + Number of
Spectral Bands + Sample Size

7 -111.65 0.06

Intercept-Only 2 -41.93 0.00

Table 4.4 shows the estimated coefficients for the best-fit model — i.e., the model with the lowest

AIC𝑐 value among the candidate models. The coefficients are presented both in the FT-transformed

scale(b) and on the natural (back-transformed) scale. The results highlight that the proportion of

the majority class has the largest positive effect (𝑏 = 0.39, 𝑏𝐵𝑇 = 0.15, p < .001). Suggesting that

increasing the majority-class proportion significantly improves overall accuracy. While, the inclusion

of ancillary data has a small negative effect on the FT-transformed scale (𝑏 = −0.11, 𝑝 = 0.029) but

shows a slight positive effect once back-transformed (𝑏𝐵𝐹 = 0.01). The use of indices has a minimal

and non-significant effect (𝑝 = 0.131).

Table 4.4: Table of estimated coefficients for the best-fit model.

back-transformed scale
Predictor b SE t p b𝐵−𝐹𝑇         CI

Intercept 0.99 0.06 17.22 <.0001 0.70 [0.58, 0.80]
Majority-class Proportion 0.39 0.08 4.93 0.15 [0.05, 0.27]
Ancillary Data: Included -0.11 0.05 -2.22   0.029 0.01 [0.04, 0.00]
Indices: Used 0.06 0.04 1.53 0.131 0.00 [0.00, 0.02]

Note:
The estimated coefficients (b), standard errors (SE) on the FT transformed scale, with corresponding
t-statistics and p-values. Additionally, the coefficients (𝑏𝐵−𝐹𝑇 ) and corresponding confidence intervals
(CI) are shown on the back-transformed scale.

To assess the impact of the study features on the estimated heterogeneity the features included in

the best-fit model are fitted as sole covariates. Table 4.5 shows the parameter estimates from the

meta-analysis, comparing the intercept-only model with four mixed-effects models, one for each of the

features in the best-fit model and the best-fit model itself.
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Table 4.5: Results for heterogeneity and covariates tests for the intercept-only model, individual covari-
ates, as well as the best-fit model.

Model 𝜎2
level2 𝜎2

level3 𝑄𝐸 ×107 df      𝑝𝑄               𝐹       df 𝑝𝐹 𝐼2
level2 𝐼2

level3 𝑅2
level2 𝑅2

level3

Intercept-only 0.010 0.017 12.16 85  <.0001 36.38 63.62
Majority-class Proportion 0.009 0.007 11.46 84 <.0001 27 1 <.0001 57.29 42.71 7.85 60.71
Ancillary Data 0.010 0.015 12.04 84 <.0001   3 1 0.117 40.47 59.53 -1.44 14.66
Indices 0.010 0.018 11.99 84 <.0001   3 1 0.100 34.26 65.74 3.60 -5.75
Combined modela 0.009 0.005 11.44 82 <.0001 13 3 63.46 36.54 8.64 69.92

Note:
Test statistics, degrees of freedom, and respective p-values are provided for the intercept-only model, single-predictor
models for each of the predictors in the best model, as well as the combined model (𝑄𝐸 values are divided by 107 for
compactness).

a Combined model: Ancillary Data + Majority-class Proportion + Indices

As shown in Table 4.5, the majority-class proportion explains a greater proportion of the between-study

heterogeneity, as indicated by the reduction in 𝜎2
level2 between the intercept-only model and the model

with the Majority-class Proportion. In contrast, the use of Ancillary Data explains relatively little

between-study heterogeneity and negligible within-study heterogeneity.

The combined model (best-fit model) explains the most heterogeneity overall, as reflected in the shift

in 𝐼2 values. The total 𝐼2, consistently at 100% across all models, suggests that nearly all the variation

in effect sizes is due to differences between the studies, rather than sampling error. This observation

raises the possibility of an “apples and oranges” problem (see the discussion section), where the included

studies may be too heterogeneous to be meaningfully compared.

All models show significant heterogeneity, with Cochran’s Q test results being significant (p < 0.001).

The 𝑅2 values indicate that the covariates in the combined mixed-effects model account for 69.9% of

the variance at level 3 (between-study level) and 8.6% of the variance at level 2 (within-study level).

Figure 4.7 illustrates the relationship between the proportion of the majority class and the overall

accuracy of the individual studies included in the meta-analysis. The plot is based on the combined

mixed-effects model, where the solid black line represents the fitted regression line, and the shaded area

indicates the 95% confidence interval. Each point (or bubble) represents an individual study, with the

size of each bubble proportional to the weight it received in the analysis (i.e., larger points represent

studies that had more influence on the overall results). The plot demonstrates a clear trend: as the

proportion of the majority class increases, overall accuracy tends to improve, indicating a positive

correlation between these two variables.
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Figure 4.7: Bubble plot showing the observed effect size (overall accuracy) of the individual studies
plotted against the proportion of the majority class. Based on the mixed-effects model, the plot displays
overall accuracy as a function of the majority class proportion, with corresponding 95% confidence
interval bounds. The size of the points is proportional to the weight that each observation received in
the analysis, while the color of the points is unique to each study. The lowest overall accuracy from
each study is labeled with the first author and publication year.

The size of the points in the bubble plot illustrates the benefit of incorporating the structure of the

data into meta-analytic weighting. Specifically, the difference in the size of the bubbles is not excessive.

Figure 4.8 highlights this by plotting the weights for each study from a fixed-effects model, a random-

effects model with two levels, and the structure used here, the random-effects model with three levels.

As shown, the fixed-effects model is problematic, particularly as one study is heavily weighted, which

can distort the overall results. In contrast, the two-level and three-level models distribute the weights

more evenly across studies, reflecting the importance of accounting for between-study heterogeneity

and within-study variation.
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Figure 4.8: Intercept only models at three different levels plot to compare weighting. The size of the
points corresponds to the weights of each of the effect sizes.

Lastly, Figure 4.9 is a plot of the observed overall accuracy against the predicted overall accuracy from

the combined meta-regression model. The points are coloured based on whether ancillary information

was included in the primary study. As Figure 4.9 illustrates, the meta-regression model tends to overes-

timate overall accuracy — the fitted regression line (in grey) lies above the line of perfect agreement (y

= x, in black), indicating that the model’s predictions are generally higher than the observed accuracy

values.
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Figure 4.9: Observed and predicted overall accuracy. The colour indicates the addition of ancillary data
in the primary study’s model. The black dashed line represents perfect agreement between observed
and predicted values 𝑦 = 𝑥. The grey dashed line is a simple linear regression of observed versus
predicted values, showing the overestimation of overall accuracy by the meta-regression model.
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Discussion
This meta-analysis aimed to evaluate the performance of machine learning models applied to remote

sensing for SDG monitoring. Specifically, the study aimed to estimate the average performance, deter-

mine the level of heterogeneity within and across studies, assess whether specific study features influence

model performance, and lastly compare the sample-weighted and unweighted estimate summary effect.

While previous meta-analyses on machine learning models for remote sensing have predominantly relied

on unweighted approaches (O. Hall et al., 2023; e.g., Khatami et al., 2016), this study found that incor-

porating a weighted approach did not significantly alter the results. Both the weighted and unweighted

estimates showed similar average performance metrics, suggesting that weighting by sample size may

not dramatically influence the outcomes in this context.

The results from this meta-analysis show that the overall accuracy of machine learning models applied

to remote sensing is consistently high. The estimated average overall accuracy of ̂𝜇
unweighted

= 0.90 and̂𝜇
weighted

= 0.89. The results also demonstrate a considerable variability in the predictive performance

of machine learning models applied to remote sensing data for SDGs. Some of this variability could be

attributed to the proportion of the majority class as well as the inclusion of ancillary data. The type of

model, whether neural networks and tree-based models or the SDG studied, showed no differences in

overall accuracy. Unsurprisingly, the proportion of the majority class significantly affected the overall

accuracy of machine learning models. While the use of ancillary data in primary studies has a small

but significant positive effect on overall accuracy performance. No other significant effects were found

in the study features examined in this study.

The findings of this study regarding the use of ancillary data aling with Khatami et al. (2016) and

Hanadé Houmma et al. (2022) who found the use of ancillary data did improve model performance.

Some effect of the choice of machine learning model was found by previous research. For example,

Khatami et al. (2016) noted that while support vector machines and neural networks performed well,

differences between other model types were not significant. Notably, no study was found that explic-

itly corrected for class imbalance (proportion of the majority class) when assessing the difference in

performance between groups. While Khatami et al. (2016) employed pairwise comparisons, which does

ensure that models are compared within the same data context, this study goes further in directly

highlighting the influence of class proportion on overall accuracy.
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Limitations

1. Number of reviewers: From the 200 studies randomly sampled, three reviewers assessed

whether full-text screening should be conducted. Only 57 papers were agreed upon by all three

reviewers, while each reviewer thought between 77 and 81 studies could have been included. This

highlights the subjectivity of the selection process and the importance of having multiple reviewers.

The full-text screening was only conducted by one person which means that this subjectivity or

potential mistakes were missed in the final dataset. This issue is exasperated by the inconsistent

reporting on methods in this field. For example, one feature that could not be included in the

analysis was whether the results reported were derived from the training or test set because it

was very unclear in some of the selected studies.

2. Sample size: This analysis included a total of 20 studies. While several simulation studies

suggest that a three-level meta-analysis can yield accurate results with as few as 20 to 40 studies

(Hedges et al., 2010), this analysis is at the lower bound, and the included studies exhibit con-

siderable variability, making the statistical power a concern. Polanin (2014) suggests a minimum

of 40 studies is generally recommended to ensure robust results. Furthermore, a relatively high

proportion of the studies (6 out of 20) reported only one result (𝑘𝑗 = 1), limiting the ability to

assess within-study variability. The small sample size inherently increases the potential for bias

and may affect the reliability of the findings (Polanin, 2014).

3. Choice of effect size: While overall accuracy is widely used, it does not capture the complexity

of model performance, especially in studies with imbalanced classes. To illustrate the problem, if

99% of the data belongs to class A, a model that always predicts class A—without any regard

to the predictors—will achieve an overall accuracy of 99%, despite essentially doing nothing and

failing to capture meaningful patterns. For more specific details on the issues related to the use

of overall accuracy, see Foody (2020) and Stehman & Foody (2019). Alternative metrics include

Matthews’ correlation coefficient, F1 score, Somers’ D, and average precision. Unfortunately, these

metrics are rarely reported in the studies analyzed here. Moreover, some of these alternatives

are also sensitive to class imbalance and must be corrected to ensure comparability across studies

(Burger & Meertens, 2020).

4. Publication bias: This study only examined published results, which introduces publication

bias—a well-documented effect where studies with positive results are more likely to be published,

while negative or neutral findings remain unpublished (Borenstein et al., 2009; Bozada et al., 2021;

Hansen et al., 2022b; Harrer et al., 2022). This bias can lead to an overestimation of effects, as

demonstrated in this study, where the average overall accuracy is around 90%.

5. Study features included: The analysis would have benefited from the inclusion of more study
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features. It is also important to note that most of the study features included in this research were

between-study covariates and did not differ within studies, which explains why only the between-

study heterogeneity was reduced. Furthermore, due to the small sample size, it was necessary to

aggregate the study features into broad categories, which limited the granularity of the analysis.

6. Apples and oranges problem: The 𝐼2 result of effectively 100% may indicate that the included

studies are too different to statistically compare. This is often referred to as the “apples and

oranges problem” (Harrer et al., 2022, Chapter 1). The extent to which primary studies can differ

while still being meaningfully combined in a meta-analysis is debated. However, when Robert

Rosenthal, a pioneer in meta-analysis, was asked whether combining studies with significant

differences is valid his response was “combining apples and oranges makes sense if your goal is

to produce a fruit salad” (Borenstein et al., 2009, Chapter 40, pp. 357). In this case, despite

the diverse research aims of the included studies, the objective is to draw general conclusions

about machine learning applications in remote sensing for SDG monitoring. This approach can

be viewed as a “fruit salad” with potential for broad applicability across different SDG contexts.

However, this again raises the issue of sample size, as a large sample is required to ensure sufficient

statistical power to draw confident conclusions.

7. Cochran’s Q and large sample sizes: Another limitation is the reliance on Cochran’s Q

for testing heterogeneity. While widely used, the power of the Q-statistic is dependent on the

number of included effect sizes (𝑘) and the precision of the studies i.e., the sample size of that

study (𝑚𝑖𝑗). In cases with large sample-sizes, the Q-statistic becomes highly sensitive to even

minor differences between studies. The Q-statistic is “overpowered”, which results in the detection

of statistically significant heterogeneity even when the actual differences between studies are small.

Little research has been done on the effect of very large primary-sample-sizes since meta-analyses

typically compile studies who’s unit of analysis are human patients. Primary sample sizes in the

millions is not a common issue.

8. Transformation of the effect size: In general model selection at the transformed level presents

limitations, as the relevance of features is assessed on the transformed scale, which may not directly

translate to the original effect size after back-transformation. This complicates the interpretation

of results, since conclusions drawn on the transformed scale may not have the same meaning

when applied to the original scale. This effect is seen with the covariate: use of ancillary data.

Additionally, the use of FT transformation is contested in the literature because of several im-

portant limitations (Doi & Xu, 2021; Lin & Xu, 2020; Röver & Friede, 2022; Schwarzer et al.,

2019). First, the FT is notably unintuitive, specifically the calculation of variance which relies

on the structure of an arcsine function’s derivative. Second, back-transforming the pooled effect

size using certain methods—such as the harmonic mean of primary sample sizes—can lead to
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misleading results (Doi & Xu, 2021; Lin & Xu, 2020; Röver & Friede, 2022; see Schwarzer et al.,

2019; Wang, 2023). In this analysis, the pooled variance, rather than the harmonic mean, was

used for back-transformation, which seems to address the main concern debated in the literature.

Nevertheless, the choice of back-transformation method significantly influences the outcome, and

justifying a specific method is especially challenging in a multilevel data structure (Röver & Friede,

2022). Lastly, in a random-effects model the true (transformed) proportion is assumed to follow a

normal distribution between studies, the FT transformation potentially violates this assumption

as the arcsine function has a bounded domain (Röver & Friede, 2022).

Implications for Future Research

The limitations identified in this meta-analysis suggest several directions for future research that can

enhance the robustness and generalisability of findings related to machine learning applications in

remote sensing for SDG monitoring.

1. Sample size and model complexity: One of the primary limitations of this meta-analysis was

the small sample size. Future research should aim to expand the pool of included studies. This

would mean that interaction effects between the collected study features could also be included

in the analysis. The structure of the random effects can also be explored with the application of

more sophisticated variance-covariance structures for random effects. This approach, sometimes

referred to as dose-response meta-analysis (Viechtbauer, 2024b, p. 269), would provide insights

into how specific study characteristics influence effect sizes over time or across varying conditions.

2. Broader inclusion of performance metrics: This meta-analysis primarily focused on overall

accuracy, a commonly used but potentially misleading performance metric, particularly in imbal-

anced datasets. Future studies should expand the range of performance metrics, incorporating

class-specific precision, recall, F1-score, Matthews’ correlation coefficient, F1 score, or Somers’ D

to provide a more comprehensive evaluation of model performance (Burger & Meertens, 2020).

More than one effect size can be modeled using network meta- analysis models (Harrer et al.,

2022, Chapter 12). The inclusion of more performance metrics would offer a more nuanced un-

derstanding of how models perform under different conditions.

3. Exploring additional study features and moderators: The present study focused on a

limited set of study features. Future research should investigate a broader range of potential

moderators, such as model complexity, data preprocessing techniques, and environmental or

socio-economic factors specific to SDG challenges. By including a more extensive set of fea-

tures, researchers can better understand the drivers of performance variability and refine model

selection for specific applications.
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4. Effect of large sample size in primary studies: Simulation studies could provide insights

into the sensitivity of Cochran’s Q in the context of large sample sizes. Developing less sensi-

tive methods for assessing heterogeneity would improve the reliability of meta-analytic findings,

especially when studies involve substantial sample sizes, which can exaggerate minor differences

between studies.

5. Data extraction: In the time frame of this research, the ChatGPT virtual assistant showed

significant improvements in data extraction capabilities. Initially, in January 2024, ChatGPT

struggled to extract meaningful features. By May 2024, it was capable of accurately filling in all

study features directly from the provided papers (in PDF format). Although the improvement

was not formally assessed in this study, the difference was striking. Some research has already

examined the potential accuracy of large language models (LLMs) in data extraction for meta-

analyses, with promising results (Mahuli et al., 2023). However, for this thesis, ChatGPT was not

used for formal data extraction. Instead, traditional manual extraction methods were employed

to ensure accuracy. Further investigation into the accuracy of LLMs for meta-analysis is required.

LLMs can expedite the data extraction process, potentially addressing challenges related to the

limited number of included studies. Another unrelated recommendation to improve data extrac-

tion would be for journals to require results and specific features to be submitted separately in

addition to the manuscript so that the journals themselves can report trends in outcomes.
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Conclusion
This meta-analysis provides insights into the variability of machine learning models used for remote

sensing in SDG monitoring. First, (1) the average performance of machine learning models was found

to be high, but strongly influenced by class imbalance. This finding reinforces the limitations of overall

accuracy as a metric for assessing model performance. It highlights the need for a shift towards more

balanced and nuanced performance metrics in future SDG monitoring studies. Second, (2) the three-

level random-effects model showed a substantial degree of heterogeneity across outcomes. Third (3), the

role of specific study features was notable: although no significant differences were observed between

model types (e.g., neural networks or tree-based models), the proportion of the majority class and the

inclusion of ancillary data were important factors. Finally, the comparison of sample-weighted and

unweighted models (4) revealed no substantial difference in summary effect size, though the weighted

model uncovered significant heterogeneity. Lastly, more research is needed to assess the robustness and

applicability of meta-analyses methods to this field. In particular, the use of Cochran’s Q-statistic is

questionable in the context of this analysis, as the very large sample sizes might make the Q-statistic

overly sensitive. This can result in the detection of statistically significant heterogeneity, even when

the heterogeneity may not be practically meaningful.
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